This conference brought together observers and theorists to discuss what we are learning from the current generation of extragalactic neutral hydrogen observations and what prospects lie ahead, with particular emphasis on the exciting prospects for the next 3 to 10 years with the major U.S. facilities.
Along with the traditional optical window, many new windows have been opened on galaxies in the last two decades, made possible by new developments in groundbased detectors and by space missions that allow detection of photons that are otherwise absorbed by the Earth's atmosphere. Galaxies can now be observed in the radio, submillimeter, IR, optical, UV, X- and gamma-ray bands, each window allowing us to learn more about galactic components and properties. These developments have also imposed the view that a deeper understanding of even normal galaxies requires a panchromatic approach, making use of all of the data gathered from the different windows to synthesize a comprehensive physical image of these complex astronomical systems. Windows on Galaxies presents a comprehensive view of galaxies through all the available windows, bringing together both theoretical and experimental approaches in the form of a series of reviews reporting the most recent developments complemented by contributed talks and discussions. TEXT NO. 2 The sixth workshop of the Advanced School of Astronomy examined galaxies through all available wavelength windows. Over the last twenty years, new wavelength windows have been opened in astronomy which have created many new possibilities for the observation of the properties of galaxies. The outcome of the meeting clearly stated that the approach towards the studying of galaxies should be panchromatic. Each window, from radio to gamma-rays, shows different components, and a synthesis of this knowledge presents astronomers with a comprehensive physical image of these astronomical systems: star formation, evolution of galaxies, molecular contents, gas flows, interstellar matter and properties of galaxies in the several wavelength fields are discussed in this volume.
The Transactions XXVIIA Reports on Astronomy 2006-2009 provides a comprehensive and authoritative review of what has been achieved in astronomy during the years 2006 to 2009. These insightful and up-to-date reviews have been written by the presidents and chairpersons of the IAU scientific bodies: the Divisions, the Commissions, and the Working Groups. Topics covered in this wide-ranging volume include: fundamental astronomy; the Sun and heliosphere; planetary sciences; stars; variable stars; interstellar matter; the Galactic system; galaxies and the Universe; optical and infrared techniques; radio astronomy; space and high-energy astrophysics; and other IAU activities. The reviews have been written at a level suitable for colleagues in the same fields, but will also be useful for students and researchers wishing to gain an overview of astronomical fields beyond their own research area.
With the discovery of planets beyond our solar system 25 years ago, exoplanet research has expanded dramatically, with new state-of-the-art ground-based and space-based missions dedicated to their discovery and characterisation. With more than 3,500 exoplanets now known, the complexity of the discovery techniques, observations and physical characterisation have grown exponentially. This Handbook ties all these avenues of research together across a broad range of exoplanet science. Planet formation, exoplanet interiors and atmospheres, and habitability are discussed, providing in-depth coverage of our knowledge to date. Comprehensively updated from the first edition, it includes instrumental and observational developments, in-depth treatment of the new Kepler mission results and hot Jupiter atmospheric studies, and major updates on models of exoplanet formation. With extensive references to the research literature and appendices covering all individual exoplanet discoveries, it is a valuable reference to this exciting field for both incoming and established researchers.
This book comprises expository articles on different aspects of gravitation and cosmology that are aimed at graduate students. The topics discussed are of contemporary interest assuming only an elementary introduction to gravitation and cosmology. The presentations are to a certain extent pedagogical in nature, and the material developed is not usually found in sufficient detail in recent textbooks in these areas.
This book provides an introduction to the physics of interstellar gas in the Galaxy. It deals with the diffuse interstellar medium which supplies a complex environment for exploring the neutral gas content of a galaxy like the Milky Way and the techniques necessary for studying this non-stellar component. After an initial exposition of the phases of the interstellar medium and the role of gas in a spiral galaxy, the authors discuss the transition from atomic to molecular gas. They then consider basic radiative transfer and molecular spectroscopy with particular emphasis on the molecules useful for studying low-density molecular gas. Observational techniques for investigating the gas and the dust component of the diffuse interstellar medium throughout the electromagnetic spectrum are explored emphasizing results from the recent Herschel and Planck missions. A brief exposition on dust in the diffuse interstellar medium is followed by a discussion of molecular clouds in general and high-latitude molecular clouds in particular. Ways of calibrating CO observations with the molecular hydrogen content of a cloud are examined along with the dark molecular gas controversy. High-latitude molecular clouds are considered in detail as vehicles for applying the techniques developed in the book. Given the transient nature of diffuse and translucent molecular clouds, the role of turbulence in the origin and dynamics of these objects is examined in some detail. The book is targeted at graduate students or postdocs who are entering the field of interstellar medium studies.
Present-day elliptical, spiral and irregular galaxies are large systems made of stars, gas and dark matter. Their properties result from a variety of physical processes that have occurred during the nearly fourteen billion years since the Big Bang. This comprehensive textbook, which bridges the gap between introductory and specialized texts, explains the key physical processes of galaxy formation, from the cosmological recombination of primordial gas to the evolution of the different galaxies that we observe in the Universe today. In a logical sequence, the book introduces cosmology, illustrates the properties of galaxies in the present-day Universe, then explains the physical processes behind galaxy formation in the cosmological context, taking into account the most recent developments in this field. The text ends on how to find distant galaxies with multi-wavelength observations, and how to extract the physical and evolutionary properties based on imaging and spectroscopic data.