Ants are probably the most dominant insect group on Earth, representing ten to fifteen percent of animal biomass in terrestrial ecosystems. Flowering plants, meanwhile, owe their evolutionary success to an array of interspecific interactions—such as pollination, seed dispersal, and herbivory—that have helped to shape their great diversity. The Ecology and Evolution of Ant-Plant Interactions brings together findings from the scientific literature on the coevolution of ants and plants to provide a better understanding of the unparalleled success of these two remarkable groups, of interspecific interactions in general, and ultimately of terrestrial biological communities. The Ecology and Evolution of Ant-Plant Interactions synthesizes the dynamics of ant-plant interactions, including the sources of variation in their outcomes. Victor Rico-Gray and Paulo S. Oliveira capture both the emerging appreciation of the importance of these interactions within ecosystems and the developing approaches that place studies of these interactions into a broader ecological and evolutionary context. The collaboration of two internationally renowned scientists, The Ecology and Evolution of Ant-Plant Interactions will become a standard reference for understanding the complex interactions between these two taxa.
This important work explores the natural history, experimental approach, and integration of evolutionary and ecological literature of ant-plant mutualisms.
The incredible global diversity of ants, and their important ecological roles, mean that we cannot ignore the significance of ants in ecological systems. Ant Ecology takes the reader on a journey of discovery from the beginnings of ants many hundreds of thousands of years ago, through to the makings of present day distributions.
A comprehensive, multi-author treatise on the social insects of the world, with some auxiliary attention to such adjacent topics as subsocial insects and social arachnids. The work is to serve as a very convenient, yet authoritative reference work on the biology and systematics of social insects of the world. This is a project of the International Union for the Study of Social Insects (IUSSI), the worldwide organizing body for the scientific study of social insects.
Secretions and emissions in biological systems play important signaling roles within the organism but also in its communications with the surrounding environment. This volume brings together state-of-the-art information on the role of secretions and emissions in different organs and organisms ranging from flowers and roots of plants to nematodes and human organs. The plant chapters relate information regarding the biochemistry of flower volatiles and root exudates, and their role in attracting pollinators and soil microbial communities respectively. Microbial chapters explain the biochemistry and ecology of quorum sensing and how microbial communities highly co-adapted to plants can aid in bio-energy applications by degrading ligno-cellulosic materials. Other chapters explain the biology of secretions by nematodes, algae and humans, among other organisms. This volume will be a welcome addition to the literature, as no other book covers aspects related to biological secretion in such a holistic and integrative manner.
The associations between insects and microorganisms, while pervasive and of paramount ecological importance, have been relatively poorly understood. The third book in this set, Insect Symbiosis, Volume 3, complements the previous volumes in exploring this somewhat uncharted territory. Like its predecessors, Volume 3 illustrates how symbiosis resear
Combining breadth of coverage with detail, this logical and cohesive introduction to insect ecology couples concepts with a broad range of examples and practical applications. It explores cutting-edge topics in the field, drawing on and highlighting the links between theory and the latest empirical studies. The sections are structured around a series of key topics, including behavioral ecology; species interactions; population ecology; food webs, communities and ecosystems; and broad patterns in nature. Chapters progress logically from the small scale to the large; from individual species through to species interactions, populations and communities. Application sections at the end of each chapter outline the practicality of ecological concepts and show how ecological information and concepts can be useful in agriculture, horticulture and forestry. Each chapter ends with a summary, providing a brief recap, followed by a set of questions and discussion topics designed to encourage independent and creative thinking.
How do ant colonies get anything done, when no one is in charge? An ant colony operates without a central control or hierarchy, and no ant directs another. Instead, ants decide what to do based on the rate, rhythm, and pattern of individual encounters and interactions--resulting in a dynamic network that coordinates the functions of the colony. Ant Encounters provides a revealing and accessible look into ant behavior from this complex systems perspective. Focusing on the moment-to-moment behavior of ant colonies, Deborah Gordon investigates the role of interaction networks in regulating colony behavior and relations among ant colonies. She shows how ant behavior within and between colonies arises from local interactions of individuals, and how interaction networks develop as a colony grows older and larger. The more rapidly ants react to their encounters, the more sensitively the entire colony responds to changing conditions. Gordon explores whether such reactive networks help a colony to survive and reproduce, how natural selection shapes colony networks, and how these structures compare to other analogous complex systems. Ant Encounters sheds light on the organizational behavior, ecology, and evolution of these diverse and ubiquitous social insects.