The Equation that Couldn't Be Solved

The Equation that Couldn't Be Solved

Author: Mario Livio

Publisher: Simon and Schuster

Published: 2005-09-19

Total Pages: 367

ISBN-13: 0743274628

DOWNLOAD EBOOK

What do Bach's compositions, Rubik's Cube, the way we choose our mates, and the physics of subatomic particles have in common? All are governed by the laws of symmetry, which elegantly unify scientific and artistic principles. Yet the mathematical language of symmetry-known as group theory-did not emerge from the study of symmetry at all, but from an equation that couldn't be solved. For thousands of years mathematicians solved progressively more difficult algebraic equations, until they encountered the quintic equation, which resisted solution for three centuries. Working independently, two great prodigies ultimately proved that the quintic cannot be solved by a simple formula. These geniuses, a Norwegian named Niels Henrik Abel and a romantic Frenchman named Évariste Galois, both died tragically young. Their incredible labor, however, produced the origins of group theory. The first extensive, popular account of the mathematics of symmetry and order, The Equation That Couldn't Be Solved is told not through abstract formulas but in a beautifully written and dramatic account of the lives and work of some of the greatest and most intriguing mathematicians in history.


Is God a Mathematician?

Is God a Mathematician?

Author: Mario Livio

Publisher: Simon and Schuster

Published: 2011-02-22

Total Pages: 320

ISBN-13: 1416594434

DOWNLOAD EBOOK

Bestselling author and astrophysicist Mario Livio examines the lives and theories of history’s greatest mathematicians to ask how—if mathematics is an abstract construction of the human mind—it can so perfectly explain the physical world. Nobel Laureate Eugene Wigner once wondered about “the unreasonable effectiveness of mathematics” in the formulation of the laws of nature. Is God a Mathematician? investigates why mathematics is as powerful as it is. From ancient times to the present, scientists and philosophers have marveled at how such a seemingly abstract discipline could so perfectly explain the natural world. More than that—mathematics has often made predictions, for example, about subatomic particles or cosmic phenomena that were unknown at the time, but later were proven to be true. Is mathematics ultimately invented or discovered? If, as Einstein insisted, mathematics is “a product of human thought that is independent of experience,” how can it so accurately describe and even predict the world around us? Physicist and author Mario Livio brilliantly explores mathematical ideas from Pythagoras to the present day as he shows us how intriguing questions and ingenious answers have led to ever deeper insights into our world. This fascinating book will interest anyone curious about the human mind, the scientific world, and the relationship between them.


Brilliant Blunders

Brilliant Blunders

Author: Mario Livio

Publisher: Simon and Schuster

Published: 2013-05-14

Total Pages: 352

ISBN-13: 1439192383

DOWNLOAD EBOOK

Drawing on the lives of five great scientists, this “scholarly, insightful, and beautifully written book” (Martin Rees, author of From Here to Infinity) illuminates the path to scientific discovery. Charles Darwin, William Thomson (Lord Kelvin), Linus Pauling, Fred Hoyle, and Albert Einstein all made groundbreaking contributions to their fields—but each also stumbled badly. Darwin’s theory of natural selection shouldn’t have worked, according to the prevailing beliefs of his time. Lord Kelvin gravely miscalculated the age of the earth. Linus Pauling, the world’s premier chemist, constructed an erroneous model for DNA in his haste to beat the competition to publication. Astrophysicist Fred Hoyle dismissed the idea of a “Big Bang” origin to the universe (ironically, the caustic name he gave to this event endured long after his erroneous objections were disproven). And Albert Einstein speculated incorrectly about the forces of the universe—and that speculation opened the door to brilliant conceptual leaps. As Mario Livio luminously explains in this “thoughtful meditation on the course of science itself” (The New York Times Book Review), these five scientists expanded our knowledge of life on earth, the evolution of the earth, and the evolution of the universe, despite and because of their errors. “Thoughtful, well-researched, and beautifully written” (The Washington Post), Brilliant Blunders is a wonderfully insightful examination of the psychology of five fascinating scientists—and the mistakes as well as the achievements that made them famous.


Why?

Why?

Author: Mario Livio

Publisher: Simon and Schuster

Published: 2017-07-11

Total Pages: 280

ISBN-13: 1476792127

DOWNLOAD EBOOK

Astrophysicist and author Mario Livio investigates perhaps the most human of all our characteristics—curiosity—in this “lively, expert, and definitely not dumbed-down account” (Kirkus Reviews) as he explores our innate desire to know why. Experiments demonstrate that people are more distracted when they overhear a phone conversation—where they can know only one side of the dialogue—than when they overhear two people talking and know both sides. Why does half a conversation make us more curious than a whole conversation? “Have you ever wondered why we wonder why? Mario Livio has, and he takes you on a fascinating quest to understand the origin and mechanisms of our curiosity. I thoroughly recommend it.” (Adam Riess, Nobel Prize Winner in Physics, 2011). Curiosity is not only at the heart of mystery and suspense novels, it is also essential to other creative endeavors, from painting to sculpture to music. It is the principal driver of basic scientific research. Even so, there is still no definitive scientific consensus about why we humans are so curious, or about the mechanisms in our brain that are responsible for curiosity. In the ever-fascinating Why? Livio interviewed scientists in several fields to explore the nature of curiosity. He examined the lives of two of history’s most curious geniuses, Leonardo da Vinci and Richard Feynman. He also talked to people with boundless curiosity: a superstar rock guitarist who is also an astrophysicist; an astronaut with degrees in computer science, biology, literature, and medicine. What drives these people to be curious about so many subjects? An astrophysicist who has written about mathematics, biology, and now psychology and neuroscience, Livio has firsthand knowledge of his subject which he explores in a lucid, entertaining way that will captivate anyone who is curious about curiosity.


Functional Equations and How to Solve Them

Functional Equations and How to Solve Them

Author: Christopher G. Small

Publisher: Springer Science & Business Media

Published: 2007-04-03

Total Pages: 139

ISBN-13: 0387489010

DOWNLOAD EBOOK

Many books have been written on the theory of functional equations, but very few help readers solve functional equations in mathematics competitions and mathematical problem solving. This book fills that gap. Each chapter includes a list of problems associated with the covered material. These vary in difficulty, with the easiest being accessible to any high school student who has read the chapter carefully. The most difficult will challenge students studying for the International Mathematical Olympiad or the Putnam Competition. An appendix provides a springboard for further investigation of the concepts of limits, infinite series and continuity.


Abel's Proof

Abel's Proof

Author: Peter Pesic

Publisher: MIT Press

Published: 2004-02-27

Total Pages: 242

ISBN-13: 9780262661829

DOWNLOAD EBOOK

The intellectual and human story of a mathematical proof that transformed our ideas about mathematics. In 1824 a young Norwegian named Niels Henrik Abel proved conclusively that algebraic equations of the fifth order are not solvable in radicals. In this book Peter Pesic shows what an important event this was in the history of thought. He also presents it as a remarkable human story. Abel was twenty-one when he self-published his proof, and he died five years later, poor and depressed, just before the proof started to receive wide acclaim. Abel's attempts to reach out to the mathematical elite of the day had been spurned, and he was unable to find a position that would allow him to work in peace and marry his fiancé. But Pesic's story begins long before Abel and continues to the present day, for Abel's proof changed how we think about mathematics and its relation to the "real" world. Starting with the Greeks, who invented the idea of mathematical proof, Pesic shows how mathematics found its sources in the real world (the shapes of things, the accounting needs of merchants) and then reached beyond those sources toward something more universal. The Pythagoreans' attempts to deal with irrational numbers foreshadowed the slow emergence of abstract mathematics. Pesic focuses on the contested development of algebra—which even Newton resisted—and the gradual acceptance of the usefulness and perhaps even beauty of abstractions that seem to invoke realities with dimensions outside human experience. Pesic tells this story as a history of ideas, with mathematical details incorporated in boxes. The book also includes a new annotated translation of Abel's original proof.


The Riemann Hypothesis

The Riemann Hypothesis

Author: Karl Sabbagh

Publisher: Macmillan

Published: 2003

Total Pages: 364

ISBN-13: 9780374250072

DOWNLOAD EBOOK

An engaging, informative, and wryly humorous exploration of one of the great conundrums of all time In 1859 Bernhard Riemann, a shy German mathematician, wrote an eight-page article giving an answer to a problem that had long puzzled mathematicians. But he didn’t provide a proof. In fact, he said he couldn’t prove it but he thought that his answer was “very probably” true. From the publication of that paper to the present day, the world’s mathematicians have been fascinated, infuriated, and obsessed with proving the Riemann Hypothesis, and so great is the interest in its solution that in 2001 an American foundation put up prize money of $1 million for the first person to demonstrate that the hypothesis is correct. The hypothesis refers to prime numbers, which are in some sense the atoms from which all other numbers are constructed, and seeks to explain where every single prime to infinity will occur. Riemann’s idea—if true—would illuminate how these numbers are distributed, and if false will throw pure mathematics into confusion. Karl Sabbagh meets some of the world’s mathematicians who spend their lives thinking about the Riemann Hypothesis, focusing attention in particular on “Riemann’s zeros,” a series of points that are believed to lie in a straight line, though no one can prove it. Accessible and vivid, The Riemann Hypothesis is a brilliant explanation of numbers and a profound meditation on the ultimate meaning of mathematics.


How Not to Be Wrong

How Not to Be Wrong

Author: Jordan Ellenberg

Publisher: Penguin Press

Published: 2014-05-29

Total Pages: 480

ISBN-13: 1594205221

DOWNLOAD EBOOK

A brilliant tour of mathematical thought and a guide to becoming a better thinker, How Not to Be Wrong shows that math is not just a long list of rules to be learned and carried out by rote. Math touches everything we do; It's what makes the world make sense. Using the mathematician's methods and hard-won insights-minus the jargon-professor and popular columnist Jordan Ellenberg guides general readers through his ideas with rigor and lively irreverence, infusing everything from election results to baseball to the existence of God and the psychology of slime molds with a heightened sense of clarity and wonder. Armed with the tools of mathematics, we can see the hidden structures beneath the messy and chaotic surface of our daily lives. How Not to Be Wrong shows us how--Publisher's description.


The Emergence of Number

The Emergence of Number

Author: John N. Crossley

Publisher: World Scientific

Published: 1987

Total Pages: 240

ISBN-13: 9789971504144

DOWNLOAD EBOOK

This book presents detailed studies of the development of three kinds of number. In the first part the development of the natural numbers from Stone-Age times right up to the present day is examined not only from the point of view of pure history but also taking into account archaeological, anthropological and linguistic evidence. The dramatic change caused by the introduction of logical theories of number in the 19th century is also treated and this part ends with a non-technical account of the very latest developments in the area of G”del's theorem. The second part is concerned with the development of complex numbers and tries to answer the question as to why complex numbers were not introduced before the 16th century and then, by looking at the original materials, shows how they were introduced as a pragmatic device which was only subsequently shown to be theoretically justifiable. The third part concerns the real numbers and examines the distinction that the Greeks made between number and magnitude. It then traces the gradual development of a theory of real numbers up to the precise formulations in the nineteeth century. The importance of the Greek distinction between the number line and the geometric line is brought into sharp focus.This is an new edition of the book which first appeared privately published in 1980 and is now out of print. Substantial revisions have been made throughout the text, incorporating new material which has recently come to light and correcting a few relatively minor errors. The third part on real numbers has been very extensively revised and indeed the last chapter has been almost completely rewritten. Many revisions are the results of comments from earlier readers of the book.


How to Remember Equations and Formulae

How to Remember Equations and Formulae

Author: Phil Chambers

Publisher: LTL Training Ltd

Published: 2013-08-22

Total Pages: 125

ISBN-13: 1904906044

DOWNLOAD EBOOK

At last! The book that all maths and physics students have been waiting for - "How To Remember Equations And Formulae" “If you need to remember formulae of any length, for study or work, and you’d like your hand held while you master this skill effortlessly in a fun way, you should buy this book today.” Amanda Ollier, author of the Self Help Bible and The Mindset Shift Never forget an equation or formula ever again Save time in exams, get the results you really deserve Impress your tutors and potential employers Stand out against others in the job market Enhance your earning potential Perfect for anyone studying or teaching maths, physics, accountancy, economics, engineering or the sciences, from A levels right through to postgraduate. What the experts say... “This is an outstanding and comprehensive book that delivers on every promise! All memory strategies including mind mapping and the journey system are here for you to depend on and you’ll quickly realize this is your most treasured memory resource.” Pat Wyman, founder HowToLearn.com and author, Amazing Grades “I am delighted to recommend this book to students. Phil’s and James’ work is based on a sound application of the fundamental principles of memory training, namely the use of imagination, association, and location.” Dominic O’Brien, Eight times World Memory Champion, Author and Media Personality “Explains the techniques in a beautifully simple and eloquent manner.” David Thomas GMM. International speaker, Sunday Times No.1 bestselling author, media personality “What James Smith and Phil Chambers offer their readers here is a thoroughly researched and simple system, which combines mnemonics and mind mapping in a unique and interesting way. As well as covering just about every mathematical equation you can think of, James and Phil offer solutions for the English, Greek and Roman alphabets and all with a splash of humour and encouraging examples to get you started. I wish this has existed when I was at school, I will certainly be introducing this to my students and I am confident their results will improve as a direct result.” Amanda Ollier, author of The Self Help Bible and The Mindset Shift