The Energy of Physics, Part I: Classical Mechanics and Thermodynamics (Second Edition)

The Energy of Physics, Part I: Classical Mechanics and Thermodynamics (Second Edition)

Author: Christopher J. Fischer

Publisher: Cognella Academic Publishing

Published: 2019-01-03

Total Pages:

ISBN-13: 9781516592654

DOWNLOAD EBOOK

The Energy of Physics, Part I: Classical Mechanics and Thermodynamics provides students the opportunity to learn physics the way in which physicists understand the discipline. In contrast to standard textbooks, which introduce forces first, this text begins with classical mechanics using the concept of energy conservation. By inverting the standard order of presentation, the book enables students to understand and use calculus effectively, particularly toward applications in physics. Energy conservation is a constant theme throughout the text. Newton's laws are presented in terms of work and changes in kinetic energy, and forces are introduced as the derivative of potential energy, which is necessary for defining equilibrium conditions. A generalization of forces and Newton's laws then motivates the concepts of linear and angular momentum. The mode of presentation also allows thermodynamics to be incorporated throughout the text. The second edition includes a new chapter on fluids and new and additional practice problems for all chapters. The Energy of Physics, Part I gives students a better understanding of classical mechanics and provides a solid foundation for more advanced physics concepts and courses. The text is ideal for calculus-based physics courses for science and engineering majors.


The Physics of Energy

The Physics of Energy

Author: Robert L. Jaffe

Publisher: Cambridge University Press

Published: 2018-01-25

Total Pages: 897

ISBN-13: 1107016657

DOWNLOAD EBOOK

A comprehensive and unified introduction to the science of energy sources, uses, and systems for students, scientists, engineers, and professionals.


The Energy of Physics Part II

The Energy of Physics Part II

Author: Christopher J. Fischer

Publisher: Cognella Academic Publishing

Published: 2019-08-09

Total Pages:

ISBN-13: 9781516599769

DOWNLOAD EBOOK

The Energy of Physics Part II: Electricity and Magnetism steps away from the traditional chronological organization of material and instead groups similar topics together, thus enabling students to better understand potentials and fields and the relationship between electricity and magnetism. In opening chapters, the concepts of potential and field are introduced in the context of the gravitational, electric, and magnetic interactions between point particles. Later chapters discuss the electric and magnetic fields and potentials of distributions of electric charge, the multipole expansions of these fields and potentials, and Maxwell's Equations. The final chapters focus on electric circuits, with particular emphasis on AC circuits, electromagnetic waves, and optics. Appendices provide additional support in applied mathematics, derivations of key equations, further discussion of select examples, and more. The second edition features extensive revisions to the majority of the chapters, new problems for all chapters, and updated material in the appendices. The Energy of Physics Part II builds on the energy-based approach to classical mechanics presented in Part I and has the similar goal of helping students develop their applied mathematics skills. The book can be used in any calculus-based introductory electricity and magnetism course, especially those in physical sciences, engineering, and mathematics.


The Energy of Physics Part II

The Energy of Physics Part II

Author: Christopher Fischer

Publisher:

Published: 2019-08-09

Total Pages: 510

ISBN-13: 9781516599752

DOWNLOAD EBOOK

The Energy of Physics Part II: Electricity and Magnetism steps away from the traditional chronological organization of material and instead groups similar topics together, thus enabling students to better understand potentials and fields and the relationship between electricity and magnetism. In opening chapters, the concepts of potential and field are introduced in the context of the gravitational, electric, and magnetic interactions between point particles. Later chapters discuss the electric and magnetic fields and potentials of distributions of electric charge, the multipole expansions of these fields and potentials, and Maxwell's Equations. The final chapters focus on electric circuits, with particular emphasis on AC circuits, electromagnetic waves, and optics. Appendices provide additional support in applied mathematics, derivations of key equations, further discussion of select examples, and more. The second edition features extensive revisions to the majority of the chapters, new problems for all chapters, and updated material in the appendices. The Energy of Physics Part II builds on the energy-based approach to classical mechanics presented in Part I and has the similar goal of helping students develop their applied mathematics skills. The book can be used in any calculus-based introductory electricity and magnetism course, especially those in physical sciences, engineering, and mathematics. Christopher J. Fischer holds a Ph.D. in applied physics from the University of Michigan, Ann Arbor. Dr. Fischer is the associate chair of the Department of Physics and Astronomy and the director of the Engineering Physics Program at the University of Kansas, Lawrence. He has been extensively involved in curriculum development, including the redesign of the university's introductory calculus-based sequence. Dr. Fischer's research focuses on both biophysics and physics education.


University Physics

University Physics

Author: Samuel J. Ling

Publisher:

Published: 2017-12-19

Total Pages: 818

ISBN-13: 9789888407613

DOWNLOAD EBOOK

University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics, science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and understand how those concepts apply to their lives and to the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Coverage and Scope Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project. VOLUME II Unit 1: Thermodynamics Chapter 1: Temperature and Heat Chapter 2: The Kinetic Theory of Gases Chapter 3: The First Law of Thermodynamics Chapter 4: The Second Law of Thermodynamics Unit 2: Electricity and Magnetism Chapter 5: Electric Charges and Fields Chapter 6: Gauss's Law Chapter 7: Electric Potential Chapter 8: Capacitance Chapter 9: Current and Resistance Chapter 10: Direct-Current Circuits Chapter 11: Magnetic Forces and Fields Chapter 12: Sources of Magnetic Fields Chapter 13: Electromagnetic Induction Chapter 14: Inductance Chapter 15: Alternating-Current Circuits Chapter 16: Electromagnetic Waves


Plasma Physics and Fusion Energy

Plasma Physics and Fusion Energy

Author: Jeffrey P. Freidberg

Publisher: Cambridge University Press

Published: 2008-07-10

Total Pages: 6

ISBN-13: 1139462156

DOWNLOAD EBOOK

There has been an increase in interest worldwide in fusion research over the last decade and a half due to the recognition that a large number of new, environmentally attractive, sustainable energy sources will be needed to meet ever increasing demand for electrical energy. Based on a series of course notes from graduate courses in plasma physics and fusion energy at MIT, the text begins with an overview of world energy needs, current methods of energy generation, and the potential role that fusion may play in the future. It covers energy issues such as the production of fusion power, power balance, the design of a simple fusion reactor and the basic plasma physics issues faced by the developers of fusion power. This book is suitable for graduate students and researchers working in applied physics and nuclear engineering. A large number of problems accumulated over two decades of teaching are included to aid understanding.


College Physics for AP® Courses

College Physics for AP® Courses

Author: Irna Lyublinskaya

Publisher:

Published: 2015-07-31

Total Pages: 1665

ISBN-13: 9781938168932

DOWNLOAD EBOOK

"This introductory, algebra-based, two-semester college physics book is grounded with real-world examples, illustrations, and explanations to help students grasp key, fundamental physics concepts. ... This online, fully editable and customizable title includes learning objectives, concept questions, links to labs and simulations, and ample practice opportunities to solve traditional physics application problems."--Website of book.


Analysis, Manifolds and Physics, Part II - Revised and Enlarged Edition

Analysis, Manifolds and Physics, Part II - Revised and Enlarged Edition

Author: Y. Choquet-Bruhat

Publisher: Elsevier

Published: 2000-11-08

Total Pages: 559

ISBN-13: 0080527159

DOWNLOAD EBOOK

Twelve problems have been added to the first edition; four of them are supplements to problems in the first edition. The others deal with issues that have become important, since the first edition of Volume II, in recent developments of various areas of physics. All the problems have their foundations in volume 1 of the 2-Volume set Analysis, Manifolds and Physics. It would have been prohibitively expensive to insert the new problems at their respective places. They are grouped together at the end of this volume, their logical place is indicated by a number of parenthesis following the title.


Part I: Physical Chemistry. Part II: Solid State Physics

Part I: Physical Chemistry. Part II: Solid State Physics

Author: Arthur S. Wightman

Publisher: Springer

Published: 2013-12-11

Total Pages: 463

ISBN-13: 3642590330

DOWNLOAD EBOOK

The fourth volume of the Collected Works is devoted to Wigners contribution to physical chemistry, statistical mechanics and solid-state physics. One corner stone was his introduction of what is now called the Wigner function, while his paper on adiabatic perturbations foreshadowed later work on Berry phases. Although few in number, Wigners articles on solid-state physics laid the foundations for the modern theory of the electronic structure of metals.


Introduction to High Energy Physics

Introduction to High Energy Physics

Author: Donald H. Perkins

Publisher: Cambridge University Press

Published: 2000-04-13

Total Pages: 454

ISBN-13: 1139643371

DOWNLOAD EBOOK

This highly-regarded text provides a comprehensive introduction to modern particle physics. Extensively rewritten and updated, this 4th edition includes developments in elementary particle physics, as well as its connections with cosmology and astrophysics. As in previous editions, the balance between experiment and theory is continually emphasised. The stress is on the phenomenological approach and basic theoretical concepts rather than rigorous mathematical detail. Short descriptions are given of some of the key experiments in the field, and how they have influenced our thinking. Although most of the material is presented in the context of the Standard Model of quarks and leptons, the shortcomings of this model and new physics beyond its compass (such as supersymmetry, neutrino mass and oscillations, GUTs and superstrings) are also discussed. The text includes many problems and a detailed and annotated further reading list.