Helping Children Learn Mathematics

Helping Children Learn Mathematics

Author: National Research Council

Publisher: National Academies Press

Published: 2002-07-31

Total Pages: 53

ISBN-13: 0309131987

DOWNLOAD EBOOK

Results from national and international assessments indicate that school children in the United States are not learning mathematics well enough. Many students cannot correctly apply computational algorithms to solve problems. Their understanding and use of decimals and fractions are especially weak. Indeed, helping all children succeed in mathematics is an imperative national goal. However, for our youth to succeed, we need to change how we're teaching this discipline. Helping Children Learn Mathematics provides comprehensive and reliable information that will guide efforts to improve school mathematics from pre-kindergarten through eighth grade. The authors explain the five strands of mathematical proficiency and discuss the major changes that need to be made in mathematics instruction, instructional materials, assessments, teacher education, and the broader educational system and answers some of the frequently asked questions when it comes to mathematics instruction. The book concludes by providing recommended actions for parents and caregivers, teachers, administrators, and policy makers, stressing the importance that everyone work together to ensure a mathematically literate society.


Author:

Publisher: IOS Press

Published:

Total Pages: 10439

ISBN-13:

DOWNLOAD EBOOK


Simple Relation Algebras

Simple Relation Algebras

Author: Steven Givant

Publisher: Springer

Published: 2018-01-09

Total Pages: 629

ISBN-13: 3319676962

DOWNLOAD EBOOK

This monograph details several different methods for constructing simple relation algebras, many of which are new with this book. By drawing these seemingly different methods together, all are shown to be aspects of one general approach, for which several applications are given. These tools for constructing and analyzing relation algebras are of particular interest to mathematicians working in logic, algebraic logic, or universal algebra, but will also appeal to philosophers and theoretical computer scientists working in fields that use mathematics. The book is written with a broad audience in mind and features a careful, pedagogical approach; an appendix contains the requisite background material in relation algebras. Over 400 exercises provide ample opportunities to engage with the material, making this a monograph equally appropriate for use in a special topics course or for independent study. Readers interested in pursuing an extended background study of relation algebras will find a comprehensive treatment in author Steven Givant’s textbook, Introduction to Relation Algebras (Springer, 2017).