The Effects of Fire and Fuels Reduction Treatments on Fire Hazard and Soil Carbon Respiration in a Sierra Nevada Pine Plantation
Author: Leda Nikola Kobziar
Publisher:
Published: 2006
Total Pages: 416
ISBN-13:
DOWNLOAD EBOOK"Throughout fire-adapted forests of the western US, and in the Sierra Nevada of California specifically, wildfire suppression has produced forest structures conducive to more severe, costly, and ecologically deleterious fires. Recent legislation has identified the necessity of management practices that manipulate forests towards less fire-hazardous structures. In the approximately 30 year old pine plantations of the Stanislaus National Forest, extensive fuels reduction procedures are being implemented. This dissertation addresses whether silvicultural and burning treatments are effective at reducing the intensity and severity of potential fire behavior, and how, along with wildfire, these treatments impact the evolution of carbon dioxide from the soil to the atmosphere. The first chapter addresses the relationships between soil respiration, tree injury, and forest floor characteristics in high and low severity wildfire burn sites in a salvage-logged mixed-conifer forest. The results indicate that fire severity influences soil CO2 efflux and should be considered in ecosystem carbon modeling. In the next chapter, fire models suggest that mechanical shredding of understory vegetation (mastication) is detrimental, and prescribed fire most effective in reducing potential fire behavior and severity in pine plantations. The third chapter documents the impact of alternative fuels treatments on soil carbon respiration patterns in the pine plantations, and shows that mastication produces short-term reductions in respiration rates and soil moisture. The final chapter further examines the relationships of fire-induced tree injuries, forest floor structure, and environmental factors to soil respiration response to fuels treatments. Each chapter is written as an independent manuscript; they collectively serve to expand the limited understanding of the effectiveness and ecological consequences of fire and fuels treatments in coniferous forests."--Abstract