The Econometric Analysis of Time Series

The Econometric Analysis of Time Series

Author: Andrew C. Harvey

Publisher:

Published: 1990

Total Pages: 387

ISBN-13: 9780860031925

DOWNLOAD EBOOK

Coverage has been extended to include recent topics. The book again presents a unified treatment of economic theory, with the method of maximum likelihood playing a key role in both estimation and testing. Exercises are included and the book is suitable as a general text for final-year undergraduate and postgraduate students.


The Econometric Analysis of Seasonal Time Series

The Econometric Analysis of Seasonal Time Series

Author: Eric Ghysels

Publisher: Cambridge University Press

Published: 2001-06-18

Total Pages: 258

ISBN-13: 9780521565882

DOWNLOAD EBOOK

Eric Ghysels and Denise R. Osborn provide a thorough and timely review of the recent developments in the econometric analysis of seasonal economic time series, summarizing a decade of theoretical advances in the area. The authors discuss the asymptotic distribution theory for linear nonstationary seasonal stochastic processes. They also cover the latest contributions to the theory and practice of seasonal adjustment, together with its implications for estimation and hypothesis testing. Moreover, a comprehensive analysis of periodic models is provided, including stationary and nonstationary cases. The book concludes with a discussion of some nonlinear seasonal and periodic models. The treatment is designed for an audience of researchers and advanced graduate students.


Time Series Econometrics

Time Series Econometrics

Author: Klaus Neusser

Publisher: Springer

Published: 2016-06-14

Total Pages: 421

ISBN-13: 331932862X

DOWNLOAD EBOOK

This text presents modern developments in time series analysis and focuses on their application to economic problems. The book first introduces the fundamental concept of a stationary time series and the basic properties of covariance, investigating the structure and estimation of autoregressive-moving average (ARMA) models and their relations to the covariance structure. The book then moves on to non-stationary time series, highlighting its consequences for modeling and forecasting and presenting standard statistical tests and regressions. Next, the text discusses volatility models and their applications in the analysis of financial market data, focusing on generalized autoregressive conditional heteroskedastic (GARCH) models. The second part of the text devoted to multivariate processes, such as vector autoregressive (VAR) models and structural vector autoregressive (SVAR) models, which have become the main tools in empirical macroeconomics. The text concludes with a discussion of co-integrated models and the Kalman Filter, which is being used with increasing frequency. Mathematically rigorous, yet application-oriented, this self-contained text will help students develop a deeper understanding of theory and better command of the models that are vital to the field. Assuming a basic knowledge of statistics and/or econometrics, this text is best suited for advanced undergraduate and beginning graduate students.


Analysis of Economic Time Series

Analysis of Economic Time Series

Author: Marc Nerlove

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 495

ISBN-13: 1483218880

DOWNLOAD EBOOK

Analysis of Economic Time Series: A Synthesis integrates several topics in economic time-series analysis, including the formulation and estimation of distributed-lag models of dynamic economic behavior; the application of spectral analysis in the study of the behavior of economic time series; and unobserved-components models for economic time series and the closely related problem of seasonal adjustment. Comprised of 14 chapters, this volume begins with a historical background on the use of unobserved components in the analysis of economic time series, followed by an Introduction to the theory of stationary time series. Subsequent chapters focus on the spectral representation and its estimation; formulation of distributed-lag models; elements of the theory of prediction and extraction; and formulation of unobserved-components models and canonical forms. Seasonal adjustment techniques and multivariate mixed moving-average autoregressive time-series models are also considered. Finally, a time-series model of the U.S. cattle industry is presented. This monograph will be of value to mathematicians, economists, and those interested in economic theory, econometrics, and mathematical economics.


The Econometric Analysis of Time Series

The Econometric Analysis of Time Series

Author: Andrew C. Harvey

Publisher: MIT Press

Published: 1990

Total Pages: 418

ISBN-13: 9780262081894

DOWNLOAD EBOOK

The Econometric Analysis of Time Series focuses on the statistical aspects of model building, with an emphasis on providing an understanding of the main ideas and concepts in econometrics rather than presenting a series of rigorous proofs.


Time Series Models

Time Series Models

Author: Andrew C. Harvey

Publisher: Financial Times/Prentice Hall

Published: 1993

Total Pages: 308

ISBN-13: 9780745012001

DOWNLOAD EBOOK

A companion volume to The Econometric Analysis of Time series, this book focuses on the estimation, testing and specification of dynamic models which are not based on any behavioural theory. It covers univariate and multivariate time series and emphasizes autoregressive moving-average processes.


Time Series and Panel Data Econometrics

Time Series and Panel Data Econometrics

Author: M. Hashem Pesaran

Publisher: Oxford University Press, USA

Published: 2015

Total Pages: 1095

ISBN-13: 0198759983

DOWNLOAD EBOOK

The book describes and illustrates many advances that have taken place in a number of areas in theoretical and applied econometrics over the past four decades.


Market Response Models

Market Response Models

Author: Dominique M. Hanssens

Publisher: Springer Science & Business Media

Published: 2005-12-19

Total Pages: 507

ISBN-13: 0306475944

DOWNLOAD EBOOK

From 1976 to the beginning of the millennium—covering the quarter-century life span of this book and its predecessor—something remarkable has happened to market response research: it has become practice. Academics who teach in professional fields, like we do, dream of such things. Imagine the satisfaction of knowing that your work has been incorporated into the decision-making routine of brand managers, that category management relies on techniques you developed, that marketing management believes in something you struggled to establish in their minds. It’s not just us that we are talking about. This pride must be shared by all of the researchers who pioneered the simple concept that the determinants of sales could be found if someone just looked for them. Of course, economists had always studied demand. But the project of extending demand analysis would fall to marketing researchers, now called marketing scientists for good reason, who saw that in reality the marketing mix was more than price; it was advertising, sales force effort, distribution, promotion, and every other decision variable that potentially affected sales. The bibliography of this book supports the notion that the academic research in marketing led the way. The journey was difficult, sometimes halting, but ultimately market response research advanced and then insinuated itself into the fabric of modern management.


Applied Time Series Analysis

Applied Time Series Analysis

Author: Terence C. Mills

Publisher: Academic Press

Published: 2019-01-24

Total Pages: 354

ISBN-13: 0128131179

DOWNLOAD EBOOK

Written for those who need an introduction, Applied Time Series Analysis reviews applications of the popular econometric analysis technique across disciplines. Carefully balancing accessibility with rigor, it spans economics, finance, economic history, climatology, meteorology, and public health. Terence Mills provides a practical, step-by-step approach that emphasizes core theories and results without becoming bogged down by excessive technical details. Including univariate and multivariate techniques, Applied Time Series Analysis provides data sets and program files that support a broad range of multidisciplinary applications, distinguishing this book from others.


Econometric Modelling with Time Series

Econometric Modelling with Time Series

Author: Vance Martin

Publisher: Cambridge University Press

Published: 2013

Total Pages: 925

ISBN-13: 0521139813

DOWNLOAD EBOOK

"Maximum likelihood estimation is a general method for estimating the parameters of econometric models from observed data. The principle of maximum likelihood plays a central role in the exposition of this book, since a number of estimators used in econometrics can be derived within this framework. Examples include ordinary least squares, generalized least squares and full-information maximum likelihood. In deriving the maximum likelihood estimator, a key concept is the joint probability density function (pdf) of the observed random variables, yt. Maximum likelihood estimation requires that the following conditions are satisfied. (1) The form of the joint pdf of yt is known. (2) The specification of the moments of the joint pdf are known. (3) The joint pdf can be evaluated for all values of the parameters, 9. Parts ONE and TWO of this book deal with models in which all these conditions are satisfied. Part THREE investigates models in which these conditions are not satisfied and considers four important cases. First, if the distribution of yt is misspecified, resulting in both conditions 1 and 2 being violated, estimation is by quasi-maximum likelihood (Chapter 9). Second, if condition 1 is not satisfied, a generalized method of moments estimator (Chapter 10) is required. Third, if condition 2 is not satisfied, estimation relies on nonparametric methods (Chapter 11). Fourth, if condition 3 is violated, simulation-based estimation methods are used (Chapter 12). 1.2 Motivating Examples To highlight the role of probability distributions in maximum likelihood estimation, this section emphasizes the link between observed sample data and 4 The Maximum Likelihood Principle the probability distribution from which they are drawn"-- publisher.