IAU Symposium No. 82, "Time and the Earth's Rotation", met to discuss modern research in the field of the rotation of the Earth with particu lar emphasis on the role of new observational techniques in this work. The use of these techniques has prompted a new look at the definitions of the traditional reference systems and the concepts of the rotation of the Earth around its center of mass. Specific topics discussed were time, polar motion, reference systems, conventional radio interferometry, very'long baseline interferometry (VLBI), Doppler satellite methods, satellite laser ranging, lunar laser ranging, and geophysical research concerning the Earth's rotation. Improvement in the accuracy of the observations is a key to possible solutions of the many unsolved problems remaining in this field. It appears that such improvement, using both classical and new techniques, is forthcoming in the near future. This will surely contribute to a better understanding of some of the long-standing questions concerning the rotation of the Earth around its center of mass and lead to an improved knowledge of the rotating, deformable Earth. This volume contains the papers presented at IAU Symposium No. 82 as well as the discussions provoked by these papers. It is hoped that it captures the principal points of the meeting and that it will contribute not only to a better understanding of existing problems, but also to future research in time and the Earth's rotation.
This accessible reference presents the evolution of concepts of time and methods of time keeping, for historians, scientists, engineers, and educators. The second edition has been updated throughout to describe twentieth- and twenty-first-century advances, progress in devices, time and cosmology, the redefinition of SI units, and the future of UTC.
Long before Galileo published his discoveries about Jupiter, lunar craters, and the Milky Way in the Starry Messenger in 1610, people were fascinated with the planets and stars around them. That interest continues today, and scientists are making new discoveries at an astounding rate. Ancient lake beds on Mars, robotic spacecraft missions, and new definitions of planets now dominate the news. How can you take it all in? Start with the new Encyclopedia of the Solar System, Second Edition.This self-contained reference follows the trail blazed by the bestselling first edition. It provides a framework for understanding the origin and evolution of the solar system, historical discoveries, and details about planetary bodies and how they interact—and has jumped light years ahead in terms of new information and visual impact. Offering more than 50% new material, the Encyclopedia includes the latest explorations and observations, hundreds of new color digital images and illustrations, and more than 1,000 pages. It stands alone as the definitive work in this field, and will serve as a modern messenger of scientific discovery and provide a look into the future of our solar system.· Forty-seven chapters from 75+ eminent authors review fundamental topics as well as new models, theories, and discussions· Each entry is detailed and scientifically rigorous, yet accessible to undergraduate students and amateur astronomers· More than 700 full-color digital images and diagrams from current space missions and observatories amplify the chapters· Thematic chapters provide up-to-date coverage, including a discussion on the new International Astronomical Union (IAU) vote on the definition of a planet· Information is easily accessible with numerous cross-references and a full glossary and index
Here are teacher demonstrations, student hands-on activities, and student journals, plus a two-sided poster in each book that presents information on one side, and a learning game on the other. It is science education at its best, balancing process and content.
This volume reviews the cumulative evidence suggesting that a connection may exist between the Earth's rotation and geotectonics. Among other benefits, such a connection may assist in deciphering the flow of the Earth's mantle.
This series of reference books describes sciences of different elds in and around geodesy with independent chapters. Each chapter covers an individual eld and describes the history, theory, objective, technology, development, highlights of research and applications. In addition, problems as well as future directions are discussed. The subjects of this reference book include Absolute and Relative Gravimetry, Adaptively Robust Kalman Filters with Applications in Navigation, Airborne Gravity Field Determination, Analytic Orbit Theory, Deformation and Tectonics, Earth Rotation, Equivalence of GPS Algorithms and its Inference, Marine Geodesy, Satellite Laser Ranging, Superconducting Gravimetry and Synthetic Aperture Radar Interferometry. These are individual subjects in and around geodesy and are for the rst time combined in a unique book which may be used for teaching or for learning basic principles of many subjects related to geodesy. The material is suitable to provide a general overview of geodetic sciences for high-level geodetic researchers, educators as well as engineers and students. Some of the chapters are written to ll literature blanks of the related areas. Most chapters are written by well-known scientists throughout the world in the related areas. The chapters are ordered by their titles. Summaries of the individual chapters and introductions of their authors and co-authors are as follows. Chapter 1 “Absolute and Relative Gravimetry” provides an overview of the gravimetric methods to determine most accurately the gravity acceleration at given locations.
The past few decades have witnessed the growth of the Earth Sciences in the pursuit of knowledge and understanding of the planet that we live on. This development addresses the challenging endeavor to enrich human lives with the bounties of Nature as well as to preserve the planet for the generations to come. Solid Earth Geophysics aspires to define and quantify the internal structure and processes of the Earth in terms of the principles of physics and forms the intrinsic framework, which other allied disciplines utilize for more specific investigations. The first edition of the Encyclopedia of Solid Earth Geophysics was published in 1989 by Van Nostrand Reinhold publishing company. More than two decades later, this new volume, edited by Prof. Harsh K. Gupta, represents a thoroughly revised and expanded reference work. It brings together more than 200 articles covering established and new concepts of Geophysics across the various sub-disciplines such as Gravity, Geodesy, Geomagnetism, Seismology, Seismics, Deep Earth Processes, Plate Tectonics, Thermal Domains, Computational Methods, etc. in a systematic and consistent format and standard. It is an authoritative and current reference source with extraordinary width of scope. It draws its unique strength from the expert contributions of editors and authors across the globe. It is designed to serve as a valuable and cherished source of information for current and future generations of professionals.
This book is intended for geophysicists, astronomers (especially those with an interest in history), historians and orientalists. The culmination of many years of research, it discusses, in depth, ancient and medieval eclipse observations and their importance in studying Earth's past rotation. This was the first major book on this subject to appear in the last twenty years. The author has specialised in the interpretation of early astronomical records and their application to problems in modern astronomy for many years. The book contains an in-depth discussion of numerous eclipse records from Babylon, China, Europe and the Arab lands. Translations of almost every record studied are given. It is shown that although tides play a dominant long-term role in producing variations in Earth's rate of rotation - causing a gradual increase in the length of the day - there are significant, and variable non-tidal changes in opposition to the main trend.