The Dynamics of Partially Molten Rock

The Dynamics of Partially Molten Rock

Author: Richard F. Katz

Publisher: Princeton University Press

Published: 2022-01-18

Total Pages: 368

ISBN-13: 0691232644

DOWNLOAD EBOOK

A valuable synthesis of the physics of magmatism for students and scholars Magma genesis and segregation have shaped Earth since its formation more than 4.5 billion years ago. Now, for the first time, the mathematical theory describing the physics of magmatism is presented in a single volume. The Dynamics of Partially Molten Rock offers a detailed overview that emphasizes the fundamental physical insights gained through an analysis of simplified problems. This textbook brings together such topics as fluid dynamics, rock mechanics, thermodynamics and petrology, geochemical transport, plate tectonics, and numerical modeling. End-of-chapter exercises and solutions as well as online Python notebooks provide material for courses at the advanced undergraduate or graduate level. This book focuses on the partial melting of Earth’s asthenosphere, but the theory presented is also more broadly relevant to natural systems where partial melting occurs, including ice sheets and the deep crust, mantle, and core of Earth and other planetary bodies, as well as to rock-deformation experiments conducted in the laboratory. For students and researchers aiming to understand and advance the cutting edge, the work serves as an entrée into the field and a convenient means to access the research literature. Notes in each chapter reference both classic papers that shaped the field and newer ones that point the way forward. The Dynamics of Partially Molten Rock requires a working knowledge of fluid mechanics and calculus, and for some chapters, readers will benefit from prior exposure to thermodynamics and igneous petrology. The first book to bring together in a unified way the theory for partially molten rocks End-of-chapter exercises with solutions and an online supplement of Jupyter notebooks Coverage of the mechanics, thermodynamics, and chemistry of magmatism, and their coupling in the context of plate tectonics and mantle convection Notes at the end of each chapter highlight key papers for further reading


The Dynamics of Partially Molten Rock

The Dynamics of Partially Molten Rock

Author: Richard F. Katz

Publisher: Princeton University Press

Published: 2022-01-18

Total Pages: 366

ISBN-13: 0691176566

DOWNLOAD EBOOK

A valuable synthesis of the physics of magmatism for students and scholars Magma genesis and segregation have shaped Earth since its formation more than 4.5 billion years ago. Now, for the first time, the mathematical theory describing the physics of magmatism is presented in a single volume. The Dynamics of Partially Molten Rock offers a detailed overview that emphasizes the fundamental physical insights gained through an analysis of simplified problems. This textbook brings together such topics as fluid dynamics, rock mechanics, thermodynamics and petrology, geochemical transport, plate tectonics, and numerical modeling. End-of-chapter exercises and solutions as well as online Python notebooks provide material for courses at the advanced undergraduate or graduate level. This book focuses on the partial melting of Earth’s asthenosphere, but the theory presented is also more broadly relevant to natural systems where partial melting occurs, including ice sheets and the deep crust, mantle, and core of Earth and other planetary bodies, as well as to rock-deformation experiments conducted in the laboratory. For students and researchers aiming to understand and advance the cutting edge, the work serves as an entrée into the field and a convenient means to access the research literature. Notes in each chapter reference both classic papers that shaped the field and newer ones that point the way forward. The Dynamics of Partially Molten Rock requires a working knowledge of fluid mechanics and calculus, and for some chapters, readers will benefit from prior exposure to thermodynamics and igneous petrology. The first book to bring together in a unified way the theory for partially molten rocks End-of-chapter exercises with solutions and an online supplement of Jupyter notebooks Coverage of the mechanics, thermodynamics, and chemistry of magmatism, and their coupling in the context of plate tectonics and mantle convection Notes at the end of each chapter highlight key papers for further reading


Structure and Dynamics of Partially Solidified Systems

Structure and Dynamics of Partially Solidified Systems

Author: D. Loper

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 475

ISBN-13: 9400935870

DOWNLOAD EBOOK

This volume contains papers presented at the NATO Advanced Research Workshop on the Structure and Dynamics of Partially Solidified Systems held at Stanford Sierra Lodge, Tahoe, California, May 12-16, 1986. This work shop grew out of a realization that there was a significant amount of interest and activity in this topic in several unrelated disciplines, and that it would be mutually beneficial to bring together those mathemati' cians, scientists and engineers interested in this subject to share their knowledge and ideas with each other. Partially solidified systems occur in a variety of natural and man made environments. Perhaps the most well-known occurrence involves the solidification of metallic alloys. Typically as a molten alloy is cooled, the solid phase advances from the cold boundary into the liquid as a branching forest of dendritic crystals. This creates a region of mixed solid and liquid phases, commonly referred to as a mushy zone, in which the solid forms a rigidly connected framework with the liquid occurring in the intercrystalline gaps. In addition to the casting of metallic alloys, mushy zones can occur in weld pools, the Earth's core and. mantle, magma chambers, temperate glaciers, frozen soils, frozen lakes and sea ice. A second mechanical configuration for the solid phase is as a suspension of small crystals within the liquid; this is referred to as a slurry.


Physics and Chemistry of Partially Molten Rocks

Physics and Chemistry of Partially Molten Rocks

Author: N. Bagdassarov

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 371

ISBN-13: 9401140162

DOWNLOAD EBOOK

Partial melting occurs in a variety of geological environments, from granitic partial melts in the continental crust, to basaltic or carbonate partial melts in the upper mantle. Partial melting is the first stage of magmatism and therefore plays a role of primary importance in the chemical differentiation of the Earth and in the transport of heat to the Earth surface. This special volume contains contributions presented at the symposium `Physics and Chemistry of Partially Molten Systems' of the EUG 9 meeting, held in Strasbourg, France, on March 23-27, 1997. It is intended to provide a current understanding of the physics of partial melting and melt segregation and covers topics such as the rheology of partially molten systems, the topology of partial melts, modelling of partial melting processes, and field observations of partial melts. Audience: This book is intended for a broad readership, including graduate students, specializing in petrology and geodynamics. The volume may be recommended as a textbook for graduate courses on petrology, geomaterial sciences and geophysics.


Timescales of Magmatic Processes

Timescales of Magmatic Processes

Author: Anthony Dosseto

Publisher: John Wiley & Sons

Published: 2011-06-24

Total Pages: 553

ISBN-13: 1444348264

DOWNLOAD EBOOK

Quantifying the timescales of current geological processes is critical for constraining the physical mechanisms operating on the Earth today. Since the Earth’s origin 4.55 billion years ago magmatic processes have continued to shape the Earth, producing the major reservoirs that exist today (core, mantle, crust, oceans and atmosphere) and promoting their continued evolution. But key questions remain. When did the core form and how quickly? How are magmas produced in the mantle, and how rapidly do they travel towards the surface? How long do magmas reside in the crust, differentiating and interacting with the host rocks to yield the diverse set of igneous rocks we see today? How fast are volcanic gases such as carbon dioxide released into the atmosphere? This book addresses these and other questions by reviewing the latest advances in a wide range of Earth Science disciplines: from the measurement of short-lived radionuclides to the study of element diffusion in crystals and numerical modelling of magma behaviour. It will be invaluable reading for advanced undergraduate and graduate students, as well as igneous petrologists, mineralogists and geochemists involved in the study of igneous rocks and processes.


Mid-Ocean Ridges

Mid-Ocean Ridges

Author: Johnson Robin Cann

Publisher: Cambridge University Press

Published: 1999-07-22

Total Pages: 328

ISBN-13: 9780521585224

DOWNLOAD EBOOK

Covers the most important problems that arise at mid-ocean ridges; for researchers working in the earth sciences.


Deformation-enhanced Fluid Transport in the Earth's Crust and Mantle

Deformation-enhanced Fluid Transport in the Earth's Crust and Mantle

Author: M.B. Holness

Publisher: Springer Science & Business Media

Published: 1997-10-31

Total Pages: 360

ISBN-13: 9780412752902

DOWNLOAD EBOOK

30% discount for members of The Mineralogical Society of Britain and Ireland The movement of fluids through rocks has profound consequences for the transport of heat and matter within the Earth. Recently, considerable effort has been expended in determining the mechanisms and pathways of geological fluid flow, with much of this research concentrated on the effects of deformation on rock permeability. Although it is well known that fractures can act as conduits for fluid transport (as evidenced by abundant mineral-fined veins and sheet-like igneous intrusions), the role of ductile deformation has now been recognised as an important factor controlling rock permeability in environments as diverse as the mantle, the deep crust, and shallow crustal shear zones. This book brings together review and research articles united by the theme of deformation-enhanced fluid transport, with the aim of emphasizing the many common roots of this important body of work. Subjects covered include the movement of basaltic melts in the mantle; the segregation, ascent and emplacement of granitic melts in the crust; the flow through the crust of volatile fluids produced during metamorphic events; and the movement of aqueous fluids through fractured rocks near the Earth's surface. Deformation-Enhanced Fluid Transport in the Earth's Crust and Mantle will appeal to all geoscientists interested in the movement of fluids through the Earth. It will prove an invaluable reference work for those working in the field and will provide i useful introduction to this wide-ranging and rapidly evolving area of research for non-specialists.


Extreme Environmental Events

Extreme Environmental Events

Author: Robert A. Meyers

Publisher: Springer Science & Business Media

Published: 2010-11-03

Total Pages: 1273

ISBN-13: 1441976949

DOWNLOAD EBOOK

Extreme Environmental Events is an authoritative single source for understanding and applying the basic tenets of complexity and systems theory, as well as the tools and measures for analyzing complex systems, to the prediction, monitoring, and evaluation of major natural phenomena affecting life on earth. These phenomena are often highly destructive, and include earthquakes, tsunamis, volcanoes, climate change,, and weather. Early warning, damage, and the immediate response of human populations to these phenomena are also covered from the point of view of complexity and nonlinear systems. In 61 authoritative, state-of-the art articles, world experts in each field apply such tools and concepts as fractals, cellular automata, solitons game theory, network theory, and statistical physics to an understanding of these complex geophysical phenomena.


Rheology and Deformation of the Lithosphere at Continental Margins

Rheology and Deformation of the Lithosphere at Continental Margins

Author: Garry D. Karner

Publisher: Columbia University Press

Published: 2004-03-24

Total Pages: 367

ISBN-13: 0231501897

DOWNLOAD EBOOK

Traditionally, investigations of the rheology and deformation of the lithosphere (the rigid or mechanically strong outer layer of the Earth, which contains the crust and the uppermost part of the mantle) have taken place at one scale in the laboratory and at an entirely different scale in the field. Laboratory experiments are generally restricted to centimeter-sized samples and day- or year-length times, while geological processes occur over tens to hundreds of kilometers and millions of years. The application of laboratory results to geological systems necessitates extensive extrapolation in both temporal and spatial scales, as well as a detailed understanding of the dominant physical mechanisms. The development of an understanding of large-scale processes requires an integrated approach. This book explores the current cutting-edge interdisciplinary research in lithospheric rheology and provides a broad summary of the rheology and deformation of the continental lithosphere in both extensional and compressional settings. Individual chapters explore contemporary research resulting from laboratory, observational, and theoretical experiments.