Lipid Modification of Proteins: A Practical Approach is a unique guide to the latest methods is use, written by the acknowledged experts in the field. Detailed protocols are provided for all the key techniques, and the relevant background material is included. This book is an essential manual for a wide range of scientists studying the modification of protein by lipids, including membrane and protein biochemists, cell biologists, immunologists, bacteriologists, parasitologists, and virologists.
This book provides a comprehensive overview of Expressed Protein Ligation (EPL), detailing methods and protocols to generate site-specifically modified proteins. Chapters include an overview of the protein semi-synthesis field, as well as related areas that have contributed to the development of EPL such as protein splicing and peptide synthesis. Following the introductory chapters, the rest of the book guides readers through protocols to perform EPL reactions, methods to synthesize peptide thioesters and to perform peptide and protein ligations, label proteins inside living cells, protocols for the semi-synthesis of phorphorylated, glycosylated and ubiquitylated proteins, synthesis and assembly of assymetrically modified nucleosomes, use of ligation auxiliaries and synthesis of cyclic proteins, as well as novel desulfurization strategies and use of selective Cys side chain protection to obtain precisely modified proteins.Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Expressed Protein Ligation: Methods and Protocols will ensure successful implementation of protein semi-synthesis methods to further study the structure and function of proteins.
The current era of incredible innovations has made science and technology one of the most powerful tools to meet the goals of incremental prosperity for humans and sustainable development. The development of the biotech industry in any given country is shaped by the characteristics of the technology—particularly its close relation to scientific knowledge—and by country-specific factors—the level and nature of the scientific knowledge base, the institutional set-up, and the role assumed by the government—which influence the country's ability to exploit new opportunities and appropriate the respective results. This book presents an integrated approach for sustained innovation in various areas of biotechnology. Focusing mainly on the industrial, socio-economic and legal implications of biotechnological advances, it examines in detail not only the implications of IPR in omics-based research but also the ethical and intellectual standards and how these can be developed for sustained innovation. Integrating science and business, it offers a peek behind the scenes of the biotech industry and provides a comprehensive analysis of the foundations of the present day industry for students and professionals alike. The book is divided into three parts: Food and Agricultural BiotechnologyIndustrial BiotechnologyPharmaceutical Biotechnology
How to synthesize native and modified proteins in the test tube With contributions from a panel of experts representing a range of disciplines, Total Chemical Synthesis of Proteins presents a carefully curated collection of synthetic approaches and strategies for the total synthesis of native and modified proteins. Comprehensive in scope, this important reference explores the three main chemoselective ligation methods for assembling unprotected peptide segments, including native chemical ligation (NCL). It includes information on synthetic strategies for the complex polypeptides that constitute glycoproteins, sulfoproteins, and membrane proteins, as well as their characterization. In addition, important areas of application for total protein synthesis are detailed, such as protein crystallography, protein engineering, and biomedical research. The authors also discuss the synthetic challenges that remain to be addressed. This unmatched resource: Contains valuable insights from the pioneers in the field of chemical protein synthesis Presents proven synthetic approaches for a range of protein families Explores key applications of precisely controlled protein synthesis, including novel diagnostics and therapeutics Written for organic chemists, biochemists, biotechnologists, and molecular biologists, Total Chemical Synthesis of Proteins provides key knowledge for everyone venturing into the burgeoning field of protein design and synthetic biology.
This volume discusses different enzyme-catalyzed ligation methodologies for a variety of different chemical transformations. This book wants readers to view enzymes as a powerful tool in both academic and industrial research. Chapters in this book cover topics such as sortase A-mediated generation of site-specifically conjugated antibody-drug conjugates; omniligase-catalyzed inter- and intramolecular ligation; ligation catalyzed by microbial transglutaminase; peptide cyclization mediated by cyanobactin macrocyclases, butelase 1 and sortase A; using BioID as a tool for protein proximity labeling in living cells; and inducible, selective labeling of proteins via enzymatic oxidation of tyrosine. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and thorough, Enzyme-Mediated Ligation Methods is a valuable resource for students and scientists from different disciplines who are interested in using enzymatic strategies to answer their research questions.
Advances in Botanical Research publishes in-depth and up-to-date reviews on a wide range of topics in plant sciences. Currently in its 76th volume, the series features several reviews by recognized experts on all aspects of plant genetics, biochemistry, cell biology, molecular biology, physiology and ecology. - Publishes in-depth and up-to-date reviews on a wide range of topics in plant sciences - Contains commentary by recognized experts on all aspects of plant genetics, biochemistry, cell biology, molecular biology, physiology, and ecology - This volume features reviews of the fast moving field of plant cyclotides
Hands-on researchers describe in step-by-step detail 73 proven laboratory methods and bioinformatics tools essential for analysis of the proteome. These cutting-edge techniques address such important tasks as sample preparation, 2D-PAGE, gel staining, mass spectrometry, and post-translational modification. There are also readily reproducible methods for protein expression profiling, identifying protein-protein interactions, and protein chip technology, as well as a range of newly developed methodologies for determining the structure and function of a protein. The bioinformatics tools include those for analyzing 2D-GEL patterns, protein modeling, and protein identification. All laboratory-based protocols follow the successful Methods in Molecular BiologyTM series format, each offering step-by-step laboratory instructions, an introduction outlining the principle behind the technique, lists of the necessary equipment and reagents, and tips on troubleshooting and avoiding known pitfalls.
Antibody-drug conjugates (ADCs) stand at the verge of a transformation. Scores of clinical programs have yielded only a few regulatory approvals, but a wave of technological innovation now empowers us to overcome past technical challenges. This volume focuses on the next generation of ADCs and the innovations that will enable them. The book inspires the future by integrating the field’s history with novel strategies and cutting-edge technologies. While the book primarily addresses ADCs for solid tumors, the last chapter explores the emerging interest in using ADCs to treat other diseases. The therapeutic rationale of ADCs is strong: to direct small molecules to the desired site of action (and away from normal tissues) by conjugation to antibodies or other targeting moieties. However, the combination of small and large molecules imposes deep complexity to lead optimization, pharmacokinetics, toxicology, analytics and manufacturing. The field has made significant advances in all of these areas by improving target selection, ADC design, manufacturing methods and clinical strategies. These innovations will inspire and educate scientists who are designing next-generation ADCs with the potential to transform the lives of patients.
Peptide therapy has become a key strategy in innovative drug development, however, one of the potential barriers for the development of novel peptide drugs in the clinic is their deficiencies in clearly defined chemistry, manufacturing and controls (CMC) strategy from clinical development to commercialization. CMC can often become a rate-limiting step due to lack of knowledge and lack of a formal policy or guidelines on CMC for peptide-based drugs. Regulators use a risk-based approach, reviewing applications on a case-by-case basis. Peptide Therapeutics: Strategy and Tactics for Chemistry, Manufacturing, and Controls covers efficient manufacturing of peptide drug substances, a review of the process for submitting applications to the regulatory authority for drug approval, a holistic approach for quality attributes and quality control from a regulatory perspective, emerging analytical tools for the characterisation of impurities, and the assessment of stability. This book is an essential reference work for students and researchers, in both academia and industry, with an interest in learning about CMC, and facilitating development and manufacture of peptide-based drugs.
This book provides detailed protocols and untold tips and tricks regarding the most well-known examples of proximity labeling methods, in which the protein of interest is genetically fused to or labeled with an enzyme that can generate short-lived reactive species to non-specifically label molecules within a certain radius of up to twenty nanometers. Beginning with peroxidase-based proximity labeling methods, the volume continues with BioID, proximity labeling methods that describe the proximity ligation assay to detect RNA-DNA interactions, UV cross-linking to demonstrate RNA-protein interactions, and how chemical and enzymatic reactivities can be improved upon DNA-DNA and protein-protein interactions, as well as “proximity-induced self-labeling,” where the radius of labeling is zero. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Proximity Labeling: Methods and Protocols serves as an ideal guide for researchers exploring the crucial roles that proximity-driven reactions play in biological systems.