Annual Report on Medicinal Chemistry series, highlights new advances in the field with this new volume presenting interesting chapters. Each chapter is written by an international board of authors. Provides the authority and expertise of leading contributors from an international board of authors Presents the latest release in the Annual Report on Medicinal Chemistry series Updated release includes the latest information on The Design of Covalent-Based Inhibitors
Biomedical Chemistry provides readers with an understanding of how fundamental chemical concepts are used to combat some diseases. The authors explain the interdisciplinary relationship of chemistry with biology, physics, pharmacy and medicine. The results of chemical research can be applied to understand chemical processes in cells and in the body, and new methods for drug transportation. Also, basic chemical ideas and determination of disease etiology are approached by developing techniques to ensure optimum interaction between drugs and human cells. This Book is an excellent resource for students and researchers in health-related fields with frontier topics in medicinal and pharmaceutical chemistry, organic chemistry and biochemistry.
Annual Report on Medicinal Chemistry series, highlights new advances in the field with this new volume presenting interesting chapters. Each chapter is written by an international board of authors. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Annual Report on Medicinal Chemistry series - Updated release includes the latest information on The Design of Covalent-Based Inhibitors
This volume provides a collection of contemporary perspectives on using activity-based protein profiling (ABPP) for biological discoveries in protein science, microbiology, and immunology. A common theme throughout is the special utility of ABPP to interrogate protein function and small-molecule interactions on a global scale in native biological systems. Each chapter showcases distinct advantages of ABPP applied to diverse protein classes and biological systems. As such, the book offers readers valuable insights into the basic principles of ABPP technology and how to apply this approach to biological questions ranging from the study of post-translational modifications to targeting bacterial effectors in host-pathogen interactions.
Fragment-based drug discovery is a rapidly evolving area of research, which has recently seen new applications in areas such as epigenetics, GPCRs and the identification of novel allosteric binding pockets. The first fragment-derived drug was recently approved for the treatment of melanoma. It is hoped that this approval is just the beginning of the many drugs yet to be discovered using this fascinating technique. This book is written from a Chemist's perspective and comprehensively assesses the impact of fragment-based drug discovery on a wide variety of areas of medicinal chemistry. It will prove to be an invaluable resource for medicinal chemists working in academia and industry, as well as anyone interested in novel drug discovery techniques.
Drug design is a complex, challenging and innovative research area. Structure-based molecular design has transformed the drug discovery approach in modern medicine. Traditionally, focus has been placed on computational, structural or synthetic methods only in isolation. This one-of-akind guide integrates all three skill sets for a complete picture of contemporary structure-based design. This practical approach provides the tools to develop a high-affinity ligand with drug-like properties for a given drug target for which a high-resolution structure exists. The authors use numerous examples of recently developed drugs to present "best practice" methods in structurebased drug design with both newcomers and practicing researchers in mind. By way of a carefully balanced mix of theoretical background and case studies from medicinal chemistry applications, readers will quickly and efficiently master the basic skills of successful drug design. This book is aimed at new and active medicinal chemists, biochemists, pharmacologists, natural product chemists and those working in drug discovery in the pharmaceutical industry. It is highly recommended as a desk reference to guide students in medicinal and chemical sciences as well as to aid researchers engaged in drug design today.
Standard medicinal chemistry courses and texts are organized by classes of drugs with an emphasis on descriptions of their biological and pharmacological effects. This book represents a new approach based on physical organic chemical principles and reaction mechanisms that allow the reader to extrapolate to many related classes of drug molecules. The Second Edition reflects the significant changes in the drug industry over the past decade, and includes chapter problems and other elements that make the book more useful for course instruction. - New edition includes new chapter problems and exercises to help students learn, plus extensive references and illustrations - Clearly presents an organic chemist's perspective of how drugs are designed and function, incorporating the extensive changes in the drug industry over the past ten years - Well-respected author has published over 200 articles, earned 21 patents, and invented a drug that is under consideration for commercialization
Provides timely, comprehensive coverage of in vivo chemical reactions within live animals This handbook summarizes the interdisciplinary expertise of both chemists and biologists performing in vivo chemical reactions within live animals. By comparing and contrasting currently available chemical and biological techniques, it serves not just as a collection of the pioneering work done in animal-based studies, but also as a technical guide to help readers decide which tools are suitable and best for their experimental needs. The Handbook of In Vivo Chemistry in Mice: From Lab to Living System introduces readers to general information about live animal experiments and detection methods commonly used for these animal models. It focuses on chemistry-based techniques to develop selective in vivo targeting methodologies, as well as strategies for in vivo chemistry and drug release. Topics include: currently available mouse models; biocompatible fluorophores; radionuclides for radiodiagnosis/radiotherapy; live animal imaging techniques such as positron emission tomography (PET) imaging; magnetic resonance imaging (MRI); ultrasound imaging; hybrid imaging; biocompatible chemical reactions; ligand-directed nucleophilic substitution chemistry; biorthogonal prodrug release strategies; and various selective targeting strategies for live animals. -Completely covers current techniques of in vivo chemistry performed in live animals -Describes general information about commonly used live animal experiments and detection methods -Focuses on chemistry-based techniques to develop selective in vivo targeting methodologies, as well as strategies for in vivo chemistry and drug release -Places emphasis on material properties required for the development of appropriate compounds to be used for imaging and therapeutic purposes in preclinical applications Handbook of In Vivo Chemistry in Mice: From Lab to Living System will be of great interest to pharmaceutical chemists, life scientists, and organic chemists. It will also appeal to those working in the pharmaceutical and biotechnology industries.
The Organic Chemistry of Enzyme-Catalyzed Reactions is not a book on enzymes, but rather a book on the general mechanisms involved in chemical reactions involving enzymes. An enzyme is a protein molecule in a plant or animal that causes specific reactions without itself being permanently altered or destroyed. This is a revised edition of a very successful book, which appeals to both academic and industrial markets. - Illustrates the organic mechanism associated with each enzyme-catalyzed reaction - Makes the connection between organic reaction mechanisms and enzyme mechanisms - Compiles the latest information about molecular mechanisms of enzyme reactions - Accompanied by clearly drawn structures, schemes, and figures - Includes an extensive bibliography on enzyme mechanisms covering the last 30 years - Explains how enzymes can accelerate the rates of chemical reactions with high specificity - Provides approaches to the design of inhibitors of enzyme-catalyzed reactions - Categorizes the cofactors that are appropriate for catalyzing different classes of reactions - Shows how chemical enzyme models are used for mechanistic studies - Describes catalytic antibody design and mechanism - Includes problem sets and solutions for each chapter - Written in an informal and didactic style
Accounts in Drug Discovery describes recent case studies in medicinal chemistry with a particular emphasis on how the inevitable problems that arise during any project can be surmounted or overcome. The Editors cover a wide range of therapeutic areas and medicinal chemistry strategies, including lead optimization starting from high-throughput screening "hits" as well as rational, structure-based design. The chapters include "follow-ons" and "next generation" compounds that aim to improve upon first-generation agents. This volume surveys the range of challenges commonly faced by medicinal chemistry researchers, including the optimization of metabolism and pharmacokinetics, toxicology, pharmaceutics and pharmacology, including proof-of-concept in the clinic for novel biological targets. The case studies include medicinal chemistry stories on recently approved and marketed drugs, but also chronicle "near-misses," i.e. exemplary compounds that may have proceeded well into the clinic but for various reasons did not result in a successful registration. As the vast majority of projects fail prior to registration, much can be learned from such narratives. By sharing a wide range of drug discovery experiences and information across the community of medicinal chemists in both industry and academia, the Editors believe that these accounts will provide insights into the art of medicinal chemistry as it is currently practiced and will help to serve the needs of active medicinal chemists.