Principles of Optics

Principles of Optics

Author: Max Born

Publisher: CUP Archive

Published: 2000-02-28

Total Pages: 996

ISBN-13: 9780521784498

DOWNLOAD EBOOK

Principles of Optics is one of the classic science books of the twentieth century, and probably the most influential book in optics published in the past 40 years. The new edition is the first ever thoroughly revised and expanded edition of this standard text. Among the new material, much of which is not available in any other optics text, is a section on the CAT scan (computerized axial tomography), which has revolutionized medical diagnostics. The book also includes a new chapter on scattering from inhomogeneous media which provides a comprehensive treatment of the theory of scattering of scalar as well as of electromagnetic waves, including the Born series and the Rytov series. The chapter also presents an account of the principles of diffraction tomography - a refinement of the CAT scan - to which Emil Wolf, one of the authors, has made a basic contribution by formulating in 1969 what is generally regarded to be the basic theorem in this field. The chapter also includes an account of scattering from periodic potentials and its connection to the classic subject of determining the structure of crystals from X-ray diffraction experiments, including accounts of von Laue equations, Bragg's law, the Ewald sphere of reflection and the Ewald limiting sphere, both generalized to continuous media. These topics, although originally introduced in connection with the theory of X-ray diffraction by crystals, have since become of considerable relevance to optics, for example in connection with deep holograms. Other new topics covered in this new edition include interference with broad-band light, which introduces the reader to an important phenomenon discovered relatively recently by Emil Wolf, namely the generation of shifts of spectral lines and other modifications of spectra of radiated fields due to the state of coherence of a source. There is also a section on the so-called Rayleigh-Sommerfield diffraction theory which, in recent times, has been finding increasing popularity among optical scientists. There are also several new appendices, including one on energy conservation in scalar wavefields, which is seldom discussed in books on optics. The new edition of this standard reference will continue to be invaluable to advanced undergraduates, graduate students and researchers working in most areas of optics.


X-Ray Diffraction

X-Ray Diffraction

Author: C. Suryanarayana

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 275

ISBN-13: 1489901485

DOWNLOAD EBOOK

In this, the only book available to combine both theoretical and practical aspects of x-ray diffraction, the authors emphasize a "hands on" approach through experiments and examples based on actual laboratory data. Part I presents the basics of x-ray diffraction and explains its use in obtaining structural and chemical information. In Part II, eight experimental modules enable the students to gain an appreciation for what information can be obtained by x-ray diffraction and how to interpret it. Examples from all classes of materials -- metals, ceramics, semiconductors, and polymers -- are included. Diffraction patterns and Bragg angles are provided for students without diffractometers. 192 illustrations.


X-Ray Diffraction

X-Ray Diffraction

Author: B. E. Warren

Publisher: Courier Corporation

Published: 2012-05-23

Total Pages: 402

ISBN-13: 0486141616

DOWNLOAD EBOOK

Rigorous graduate-level text stresses modern applications to nonstructural problems such as temperature vibration effects, order-disorder phenomena, crystal imperfections, more. Problems. Six Appendixes include tables of values. Bibliographies.


Concepts in Surface Physics

Concepts in Surface Physics

Author: M.-C. Desjonqueres

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 621

ISBN-13: 3642614000

DOWNLOAD EBOOK

A tutorial treatment of the main concepts of the physics of crystal surfaces. Emphasis is placed on simplified calculations and the corresponding detailed analytical derivations, that are able to throw light on the most important physical mechanisms. More rigorous techniques, which often require a large amount of computer time, are also explained. Wherever possible, the theory is compared to practice, with the experimental methods being described from a theoretical rather than a technical viewpoint. The topics treated include thermodynamic and statistical properties of clean and adsorbate-covered surfaces, atomic structure, vibrational properties, electronic structure, and the theory of physisorption and chemisorption. The whole is rounded off with new excercises.