Lithium Chemistry

Lithium Chemistry

Author: Anne-Marie Sapse

Publisher: John Wiley & Sons

Published: 1995-06-09

Total Pages: 612

ISBN-13: 9780471549307

DOWNLOAD EBOOK

An up-to-date, comprehensive guide to LITHIUM CHEMISTRY Although lithium has been the subject of numerous individualstudies, this intriguing element has rarely been examined from thebroad perspective many researchers require. Lithium Chemistry: ATheoretical and Experimental Overview fills this void by providingthe most thorough and up-to-date overview available of currenttheories and experimental data. Supported by nearly two hundred illustrations, this book draws uponthe expertise of prominent researchers in the field, and treats thefull range of modern applications and techniques. The result is aunique and invaluable guide to lithium studies for researchers andgraduate students working in the fields of organic, inorganic, andorgano-metallic chemistry. Lithium Chemistry: A Theoretical and Experimental Overview assumesa background in quantum chemistry and experimental physicalchemistry at the graduate level and includes coverage of thesemajor topics: * Bonding, structures, and energies in organolithium compounds * Theoretical studies of aggregates of lithium compounds * Comparison of lithium and hydrogen bonds * Lithium atom matrix reactions with small molecules * NMR of organolithium compounds * Aspects of the thermochemistry of lithium compounds * The structure of lithiated amines and lithiated ethers--fromcarbanions to carbenoids * Complexes of inorganic lithium salts * Structures of lithium salts of heteroatom compounds * Synthetic ionophores for lithium ions


Lithium Niobate Crystals

Lithium Niobate Crystals

Author: I︠U︡riĭ Sergeevich Kuzʹminov

Publisher: Cambridge Int Science Publishing

Published: 1999

Total Pages: 137

ISBN-13: 1898326304

DOWNLOAD EBOOK

Lithium niobate crystals have a number of unique properties. Lithium niobate is at the same time a ferroelectric, piezoelectric, pyroelectric, and has high nonlinearly optical and electro-optical coefficients and photorefractive sensitivity. These properties enable these crystals to be used widely in optical and acoustic devices, and photorefractive sensitivity, enhanced by doping with transitional metals, offers new possibilities of using lithium niobate as a recording holographic medium. These properties are determined by the crystal structure of lithium niobate sensitive to physical and chemical effects. Special attention is given in the book to physico-chemical features of technology, disruption of stoichiometry in these crystals and detection of this disruption by physical methods. At the same time, the ideas and methods proposed in the book can be used in technology of other crystals.


Lithium Compounds in Organic Synthesis

Lithium Compounds in Organic Synthesis

Author: Renzo Luisi

Publisher: John Wiley & Sons

Published: 2014-03-11

Total Pages: 705

ISBN-13: 3527667539

DOWNLOAD EBOOK

This unique book covers fundamentals of organolithium compounds and gives a comprehensive overview of the latest synthetic advances and developments in the field. Part I covers computational and spectroscopic aspects as well as structure-reactivity relationships of organolithiums, whereas Part II deals with new lithium-based synthetic methodologies as well as novel synthetic applications of functionalized lithium compounds. A useful resource for newcomers and active researchers involved in organic synthesis, whether working in academia or industry!


Physical Review

Physical Review

Author:

Publisher:

Published: 1926

Total Pages: 1384

ISBN-13:

DOWNLOAD EBOOK

Vols. for 1903- include Proceedings of the American Physical Society.


Glass-Ceramic Technology

Glass-Ceramic Technology

Author: Wolfram Holand

Publisher: John Wiley & Sons

Published: 2019-08-09

Total Pages: 442

ISBN-13: 1119423716

DOWNLOAD EBOOK

An updated edition of the essential guide to the technology of glass-ceramic technology Glass-ceramic materials share many properties with both glass and more traditional crystalline ceramics. The revised third edition of Glass-Ceramic Technology offers a comprehensive and updated guide to the various types of glass-ceramic materials, the methods of development, and the myriad applications for glass-ceramics. Written in an easy-to-use format, the book includes an explanation of the new generation of glass-ceramics. The updated third edition explores glass-ceramics new materials and properties and reviews the expanding regions for applying these materials. The new edition contains current information on glass/glass-ceramic forming in general and explores specific systems, crystallization mechanisms and products such as: ion exchange strengthening of glass-ceramics, glass-ceramics for mobile phones, new glass-ceramics for energy, and new glass-ceramics for optical and architectural application. It also contains a new section on dental materials and twofold controlled crystallization. This revised guide: Offers an important new section on glass/glass ceramic forming Includes the fundamentals and the application of nanotechnology as related to glass-ceramic technology Reviews the development of the various types of glass-ceramic materials Covers information on new glass-ceramics with new materials and properties and outlines the opportunities for applying these materials Written for ceramic and materials engineers, managers, and designers in the ceramic and glass industry, the third edition of Glass-Ceramic Technology features new sections on Glass/Glass-Ceramic Forming and new Glass-Ceramics as well as expanded sections on dental materials and twofold controlled crystallization.


Shock Waves in Condensed Matter

Shock Waves in Condensed Matter

Author: Y. M. Gupta

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 922

ISBN-13: 1461322073

DOWNLOAD EBOOK

The Fourth American Physical Society Topical Conference on Shock Waves in Condensed Matter was held in Spokane, Washington, July 22-25, 1985. Two hundred and fifty scientists and engineers representing thirteen countries registered at the conference. The countries represented included the United States of America, Australia, Canada, The People's Repub lic of China, France, India, Israel, Japan, Republic of China (Taiwan), United Kingdom, U. S. S. R, Switzerland and West Germany. One hundred and sixty-two technical papers, cov ering recent developments in shock wave and high pressure physics, were presented. All of the abstracts have been published in the September 1985 issue of the Bulletin of the American Physical Society. The topical conferences, held every two years since 1979, have become the principal forum for shock wave studies in condensed materials. Both formal and informal technical discussions regarding recent developments conveyed a sense of excitement. Consistent with the past conferences, the purpose of this conference was to bring together scientists and engineers studying the response of condensed matter to dynamic high pressures and temperatures. Papers covering experimental, theoretical, and numerical studies of con densed matter properties were presented. A noteworthy feature of this conference was the participation by several leading scientists engaged in static high pressure research. Donald Curran served as the Master of Ceremonies at the conference banquet, which was at tended by two hundred and seventy-five conference participants and guests including Dr. Samuel Smith, the new President of Washington State University. Dr.