These essays on a range of topics in the cognitive neurosciences report on the progress in the field over the twenty years of its existence and reflect the many groundbreaking scientific contributions and enduring influence of Michael Gazzaniga, 'the godfather of cognitive neuroscience'.
"The fourth edition of The Cognitive Neurosciences continues to chart new directions in the study of the biologic underpinnings of complex cognition - the relationship between the structural and physiological mechanisms of the nervous system and the psychological reality of the mind. The material in this edition is entirely new, with all chapters written specifically for it." --Book Jacket.
This text, based on a course taught by Randall O'Reilly and Yuko Munakata over the past several years, provides an in-depth introduction to the main ideas in the computational cognitive neuroscience. The goal of computational cognitive neuroscience is to understand how the brain embodies the mind by using biologically based computational models comprising networks of neuronlike units. This text, based on a course taught by Randall O'Reilly and Yuko Munakata over the past several years, provides an in-depth introduction to the main ideas in the field. The neural units in the simulations use equations based directly on the ion channels that govern the behavior of real neurons, and the neural networks incorporate anatomical and physiological properties of the neocortex. Thus the text provides the student with knowledge of the basic biology of the brain as well as the computational skills needed to simulate large-scale cognitive phenomena. The text consists of two parts. The first part covers basic neural computation mechanisms: individual neurons, neural networks, and learning mechanisms. The second part covers large-scale brain area organization and cognitive phenomena: perception and attention, memory, language, and higher-level cognition. The second part is relatively self-contained and can be used separately for mechanistically oriented cognitive neuroscience courses. Integrated throughout the text are more than forty different simulation models, many of them full-scale research-grade models, with friendly interfaces and accompanying exercises. The simulation software (PDP++, available for all major platforms) and simulations can be downloaded free of charge from the Web. Exercise solutions are available, and the text includes full information on the software.
A new edition of a classic work that originated the “embodied cognition” movement and was one of the first to link science and Buddhist practices. This classic book, first published in 1991, was one of the first to propose the “embodied cognition” approach in cognitive science. It pioneered the connections between phenomenology and science and between Buddhist practices and science—claims that have since become highly influential. Through this cross-fertilization of disparate fields of study, The Embodied Mind introduced a new form of cognitive science called “enaction,” in which both the environment and first person experience are aspects of embodiment. However, enactive embodiment is not the grasping of an independent, outside world by a brain, a mind, or a self; rather it is the bringing forth of an interdependent world in and through embodied action. Although enacted cognition lacks an absolute foundation, the book shows how that does not lead to either experiential or philosophical nihilism. Above all, the book's arguments were powered by the conviction that the sciences of mind must encompass lived human experience and the possibilities for transformation inherent in human experience. This revised edition includes substantive introductions by Evan Thompson and Eleanor Rosch that clarify central arguments of the work and discuss and evaluate subsequent research that has expanded on the themes of the book, including the renewed theoretical and practical interest in Buddhism and mindfulness. A preface by Jon Kabat-Zinn, the originator of the mindfulness-based stress reduction program, contextualizes the book and describes its influence on his life and work.
An essential reference for the new discipline of evolutionary cognitive neuroscience that defines the field's approach of applying evolutionary theory to guide brain-behavior investigations. Since Darwin we have known that evolution has shaped all organisms and that biological organs—including the brain and the highly crafted animal nervous system—are subject to the pressures of natural and sexual selection. It is only relatively recently, however, that the cognitive neurosciences have begun to apply evolutionary theory and methods to the study of brain and behavior. This landmark reference documents and defines the emerging field of evolutionary cognitive neuroscience. Chapters by leading researchers demonstrate the power of the evolutionary perspective to yield new data, theory, and insights on the evolution and functional modularity of the brain. Evolutionary cognitive neuroscience covers all areas of cognitive neuroscience, from nonhuman brain-behavior relationships to human cognition and consciousness, and each section of Evolutionary Cognitive Neuroscience addresses a different adaptive problem. After an introductory section that outlines the basic tenets of both theory and methodology of an evolutionarily informed cognitive neuroscience, the book treats neuroanatomy from ontogenetic and phylogenetic perspectives and explores reproduction and kin recognition, spatial cognition and language, and self-awareness and social cognition. Notable findings include a theory to explain the extended ontogenetic and brain development periods of big-brained organisms, fMRI research on the neural correlates of romantic attraction, an evolutionary view of sex differences in spatial cognition, a theory of language evolution that draws on recent research on mirror neurons, and evidence for a rudimentary theory of mind in nonhuman primates. A final section discusses the ethical implications of evolutionary cognitive neuroscience and the future of the field. Contributors: C. Davison Ankney, Simon Baron-Cohen, S. Marc Breedlove, William Christiana, Michael Corballis, Robin I. M. Dunbar, Russell Fernald, Helen Fisher, Jonathan Flombaum, Farah Focquaert, Steven J.C. Gaulin, Aaron Goetz, Kevin Guise, Ruben C. Gur, William D. Hopkins, Farzin Irani, Julian Paul Keenan, Michael Kimberly, Stephen Kosslyn, Sarah L. Levin, Lori Marino, David Newlin, Ivan S. Panyavin, Shilpa Patel, Webb Phillips, Steven M. Platek, David Andrew Puts, Katie Rodak, J. Philippe Rushton, Laurie Santos, Todd K. Shackelford, Kyra Singh, Sean T. Stevens, Valerie Stone, Jaime W. Thomson, Gina Volshteyn, Paul Root Wolpe
Cognition, Brain, and Consciousness, Second Edition, provides students and readers with an overview of the study of the human brain and its cognitive development.It discusses brain molecules and their primary function, which is to help carry brain signals to and from the different parts of the human body. These molecules are also essential for understanding language, learning, perception, thinking, and other cognitive functions of our brain. The book also presents the tools that can be used to view the human brain through brain imaging or recording.New to this edition are Frontiers in Cognitive Neuroscience text boxes, each one focusing on a leading researcher and their topic of expertise. There is a new chapter on Genes and Molecules of Cognition; all other chapters have been thoroughly revised, based on the most recent discoveries.This text is designed for undergraduate and graduate students in Psychology, Neuroscience, and related disciplines in which cognitive neuroscience is taught. - New edition of a very successful textbook - Completely revised to reflect new advances, and feedback from adopters and students - Includes a new chapter on Genes and Molecules of Cognition - Student Solutions available at http://www.baars-gage.com/ For Teachers: - Rapid adoption and course preparation: A wide array of instructor support materials are available online including PowerPoint lecture slides, a test bank with answers, and eFlashcords on key concepts for each chapter. - A textbook with an easy-to-understand thematic approach: in a way that is clear for students from a variety of academic backgrounds, the text introduces concepts such as working memory, selective attention, and social cognition. - A step-by-step guide for introducing students to brain anatomy: color graphics have been carefully selected to illustrate all points and the research explained. Beautifully clear artist's drawings are used to 'build a brain' from top to bottom, simplifying the layout of the brain. For students: - An easy-to-read, complete introduction to mind-brain science: all chapters begin from mind-brain functions and build a coherent picture of their brain basis. A single, widely accepted functional framework is used to capture the major phenomena. - Learning Aids include a student support site with study guides and exercises, a new Mini-Atlas of the Brain and a full Glossary of technical terms and their definitions. - Richly illustrated with hundreds of carefully selected color graphics to enhance understanding.
In The Algebraic Mind, Gary Marcus attempts to integrate two theories about how the mind works, one that says that the mind is a computer-like manipulator of symbols, and another that says that the mind is a large network of neurons working together in parallel. Resisting the conventional wisdom that says that if the mind is a large neural network it cannot simultaneously be a manipulator of symbols, Marcus outlines a variety of ways in which neural systems could be organized so as to manipulate symbols, and he shows why such systems are more likely to provide an adequate substrate for language and cognition than neural systems that are inconsistent with the manipulation of symbols. Concluding with a discussion of how a neurally realized system of symbol-manipulation could have evolved and how such a system could unfold developmentally within the womb, Marcus helps to set the future agenda of cognitive neuroscience.