The Classical Stefan Problem

The Classical Stefan Problem

Author: S.C. Gupta

Publisher: Elsevier

Published: 2003-10-22

Total Pages: 404

ISBN-13: 008052916X

DOWNLOAD EBOOK

This volume emphasises studies related to classical Stefan problems. The term "Stefan problem" is generally used for heat transfer problems with phase-changes such as from the liquid to the solid. Stefan problems have some characteristics that are typical of them, but certain problems arising in fields such as mathematical physics and engineering also exhibit characteristics similar to them. The term ``classical" distinguishes the formulation of these problems from their weak formulation, in which the solution need not possess classical derivatives. Under suitable assumptions, a weak solution could be as good as a classical solution. In hyperbolic Stefan problems, the characteristic features of Stefan problems are present but unlike in Stefan problems, discontinuous solutions are allowed because of the hyperbolic nature of the heat equation. The numerical solutions of inverse Stefan problems, and the analysis of direct Stefan problems are so integrated that it is difficult to discuss one without referring to the other. So no strict line of demarcation can be identified between a classical Stefan problem and other similar problems. On the other hand, including every related problem in the domain of classical Stefan problem would require several volumes for their description. A suitable compromise has to be made. The basic concepts, modelling, and analysis of the classical Stefan problems have been extensively investigated and there seems to be a need to report the results at one place. This book attempts to answer that need.


The Stefan Problem

The Stefan Problem

Author: A.M. Meirmanov

Publisher: Walter de Gruyter

Published: 2011-05-03

Total Pages: 257

ISBN-13: 3110846721

DOWNLOAD EBOOK

The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany


The Stefan Problem

The Stefan Problem

Author: L. I. Rubinšteĭn

Publisher: American Mathematical Soc.

Published: 2000-01-25

Total Pages: 429

ISBN-13: 1470428504

DOWNLOAD EBOOK

Translations of Mathematical Monographs


Kernel Functions and Elliptic Differential Equations in Mathematical Physics

Kernel Functions and Elliptic Differential Equations in Mathematical Physics

Author: Stefan Bergman

Publisher: Courier Corporation

Published: 2005-09-01

Total Pages: 450

ISBN-13: 0486445534

DOWNLOAD EBOOK

This text focuses on the theory of boundary value problems in partial differential equations, which plays a central role in various fields of pure and applied mathematics, theoretical physics, and engineering. Geared toward upper-level undergraduates and graduate students, it discusses a portion of the theory from a unifying point of view and provides a systematic and self-contained introduction to each branch of the applications it employs.


Quantum-Classical Correspondence

Quantum-Classical Correspondence

Author: A. O. Bolivar

Publisher: Springer Science & Business Media

Published: 2004-01-22

Total Pages: 216

ISBN-13: 9783540201465

DOWNLOAD EBOOK

At what level of physical existence does "quantum behavior" begin? How does it develop from classical mechanics? This book addresses these questions and thereby sheds light on fundamental conceptual problems of quantum mechanics. It elucidates the problem of quantum-classical correspondence by developing a procedure for quantizing stochastic systems (e.g. Brownian systems) described by Fokker-Planck equations. The logical consistency of the scheme is then verified by taking the classical limit of the equations of motion and corresponding physical quantities. Perhaps equally important, conceptual problems concerning the relationship between classical and quantum physics are identified and discussed. Graduate students and physical scientists will find this an accessible entrée to an intriguing and thorny issue at the core of modern physics.


Materials Phase Change PDE Control & Estimation

Materials Phase Change PDE Control & Estimation

Author: Shumon Koga

Publisher: Springer Nature

Published: 2020-11-01

Total Pages: 352

ISBN-13: 3030584909

DOWNLOAD EBOOK

This monograph introduces breakthrough control algorithms for partial differential equation models with moving boundaries, the study of which is known as the Stefan problem. The algorithms can be used to improve the performance of various processes with phase changes, such as additive manufacturing. Using the authors' innovative design solutions, readers will also be equipped to apply estimation algorithms for real-world phase change dynamics, from polar ice to lithium-ion batteries. A historical treatment of the Stefan problem opens the book, situating readers in the larger context of the area. Following this, the chapters are organized into two parts. The first presents the design method and analysis of the boundary control and estimation algorithms. Part two then explores a number of applications, such as 3D printing via screw extrusion and laser sintering, and also discusses the experimental verifications conducted. A number of open problems and provided as well, offering readers multiple paths to explore in future research. Materials Phase Change PDE Control & Estimation is ideal for researchers and graduate students working on control and dynamical systems, and particularly those studying partial differential equations and moving boundaries. It will also appeal to industrial engineers and graduate students in engineering who are interested in this area.


Partial Differential Equations of Parabolic Type

Partial Differential Equations of Parabolic Type

Author: Avner Friedman

Publisher: Courier Corporation

Published: 2013-08-16

Total Pages: 369

ISBN-13: 0486318265

DOWNLOAD EBOOK

With this book, even readers unfamiliar with the field can acquire sufficient background to understand research literature related to the theory of parabolic and elliptic equations. 1964 edition.


Geometric Analysis and Nonlinear Partial Differential Equations

Geometric Analysis and Nonlinear Partial Differential Equations

Author: Stefan Hildebrandt

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 663

ISBN-13: 3642556272

DOWNLOAD EBOOK

This book is not a textbook, but rather a coherent collection of papers from the field of partial differential equations. Nevertheless we believe that it may very well serve as a good introduction into some topics of this classical field of analysis which, despite of its long history, is highly modem and well prospering. Richard Courant wrote in 1950: "It has always been a temptationfor mathematicians to present the crystallized product of their thought as a deductive general theory and to relegate the individual mathematical phenomenon into the role of an example. The reader who submits to the dogmatic form will be easily indoctrinated. Enlightenment, however, must come from an understanding of motives; live mathematical development springs from specific natural problems which can be easily understood, but whose solutions are difficult and demand new methods or more general significance. " We think that many, if not all, papers of this book are written in this spirit and will give the reader access to an important branch of analysis by exhibiting interest ing problems worth to be studied. Most of the collected articles have an extensive introductory part describing the history of the presented problems as well as the state of the art and offer a well chosen guide to the literature. This way the papers became lengthier than customary these days, but the level of presentation is such that an advanced graduate student should find the various articles both readable and stimulating.


Models of Phase Transitions

Models of Phase Transitions

Author: Augusto Visintin

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 334

ISBN-13: 1461240786

DOWNLOAD EBOOK

... "What do you call work?" "Why ain't that work?" Tom resumed his whitewashing, and answered carelessly: "Well. lI1a), he it is, and maybe it aill't. All I know, is, it suits Tom Sawvc/:" "Oil CO/lll!, IIOW, Will do not mean to let 011 that you like it?" The brush continued to move. "Likc it? Well, I do not see wlzy I oughtn't to like it. Does a hoy get a chance to whitewash a fence every day?" That put the thing ill a Ilew light. Ben stopped nibhling the apple ... (From Mark Twain's Adventures of Tom Sawyer, Chapter II.) Mathematics can put quantitative phenomena in a new light; in turn applications may provide a vivid support for mathematical concepts. This volume illustrates some aspects of the mathematical treatment of phase transitions, namely, the classical Stefan problem and its generalizations. The in tended reader is a researcher in application-oriented mathematics. An effort has been made to make a part of the book accessible to beginners, as well as physicists and engineers with a mathematical background. Some room has also been devoted to illustrate analytical tools. This volume deals with research I initiated when I was affiliated with the Istituto di Analisi Numerica del C.N.R. in Pavia, and then continued at the Dipartimento di Matematica dell'Universita di Trento. It was typeset by the author in plain TEX