The Cauchy Transform

The Cauchy Transform

Author: Joseph A. Cima

Publisher: American Mathematical Soc.

Published: 2006

Total Pages: 286

ISBN-13: 0821838717

DOWNLOAD EBOOK

The Cauchy transform of a measure on the circle is a subject of both classical and current interest with a sizable literature. This book is a thorough, well-documented, and readable survey of this literature and includes full proofs of the main results of the subject. This book also covers more recent perturbation theory as covered by Clark, Poltoratski, and Aleksandrov and contains an in-depth treatment of Clark measures.


The Cauchy Transform, Potential Theory and Conformal Mapping

The Cauchy Transform, Potential Theory and Conformal Mapping

Author: Steven R. Bell

Publisher: CRC Press

Published: 2015-11-04

Total Pages: 221

ISBN-13: 1498727212

DOWNLOAD EBOOK

The Cauchy Transform, Potential Theory and Conformal Mapping explores the most central result in all of classical function theory, the Cauchy integral formula, in a new and novel way based on an advance made by Kerzman and Stein in 1976.The book provides a fast track to understanding the Riemann Mapping Theorem. The Dirichlet and Neumann problems f


Analytic Capacity, the Cauchy Transform, and Non-homogeneous Calderón–Zygmund Theory

Analytic Capacity, the Cauchy Transform, and Non-homogeneous Calderón–Zygmund Theory

Author: Xavier Tolsa

Publisher: Springer Science & Business Media

Published: 2013-12-16

Total Pages: 402

ISBN-13: 3319005960

DOWNLOAD EBOOK

This book studies some of the groundbreaking advances that have been made regarding analytic capacity and its relationship to rectifiability in the decade 1995–2005. The Cauchy transform plays a fundamental role in this area and is accordingly one of the main subjects covered. Another important topic, which may be of independent interest for many analysts, is the so-called non-homogeneous Calderón-Zygmund theory, the development of which has been largely motivated by the problems arising in connection with analytic capacity. The Painlevé problem, which was first posed around 1900, consists in finding a description of the removable singularities for bounded analytic functions in metric and geometric terms. Analytic capacity is a key tool in the study of this problem. In the 1960s Vitushkin conjectured that the removable sets which have finite length coincide with those which are purely unrectifiable. Moreover, because of the applications to the theory of uniform rational approximation, he posed the question as to whether analytic capacity is semiadditive. This work presents full proofs of Vitushkin’s conjecture and of the semiadditivity of analytic capacity, both of which remained open problems until very recently. Other related questions are also discussed, such as the relationship between rectifiability and the existence of principal values for the Cauchy transforms and other singular integrals. The book is largely self-contained and should be accessible for graduate students in analysis, as well as a valuable resource for researchers.


The Cauchy Transform, Potential Theory and Conformal Mapping

The Cauchy Transform, Potential Theory and Conformal Mapping

Author: Steven R. Bell

Publisher: CRC Press

Published: 1992-08-14

Total Pages: 164

ISBN-13: 9780849382703

DOWNLOAD EBOOK

The Cauchy integral formula is the most central result in all of classical function theory. A recent discovery of Kerzman and Stein allows more theorems than ever to be deduced from simple facts about the Cauchy integral. In this book, the Riemann Mapping Theorem is deduced, the Dirichlet and Neumann problems for the Laplace operator are solved, the Poisson kernal is constructed, and the inhomogenous Cauchy-Reimann equations are solved concretely using formulas stemming from the Kerzman-Stein result. These explicit formulas yield new numerical methods for computing the classical objects of potential theory and conformal mapping, and the book provides succinct, complete explanations of these methods. The Cauchy Transform, Potential Theory, and Conformal Mapping is suitable for pure and applied math students taking a beginning graduate-level topics course on aspects of complex analysis. It will also be useful to physicists and engineers interested in a clear exposition on a fundamental topic of complex analysis, methods, and their application.


Vector-valued Laplace Transforms and Cauchy Problems

Vector-valued Laplace Transforms and Cauchy Problems

Author: Wolfgang Arendt

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 526

ISBN-13: 3034850751

DOWNLOAD EBOOK

Linear evolution equations in Banach spaces have seen important developments in the last two decades. This is due to the many different applications in the theory of partial differential equations, probability theory, mathematical physics, and other areas, and also to the development of new techniques. One important technique is given by the Laplace transform. It played an important role in the early development of semigroup theory, as can be seen in the pioneering monograph by Rille and Phillips [HP57]. But many new results and concepts have come from Laplace transform techniques in the last 15 years. In contrast to the classical theory, one particular feature of this method is that functions with values in a Banach space have to be considered. The aim of this book is to present the theory of linear evolution equations in a systematic way by using the methods of vector-valued Laplace transforms. It is simple to describe the basic idea relating these two subjects. Let A be a closed linear operator on a Banach space X. The Cauchy problern defined by A is the initial value problern (t 2 0), (CP) {u'(t) = Au(t) u(O) = x, where x E X is a given initial value. If u is an exponentially bounded, continuous function, then we may consider the Laplace transform 00 u(>. ) = 1 e-). . tu(t) dt of u for large real>. .


Fractional Cauchy Transforms

Fractional Cauchy Transforms

Author: Rita A. Hibschweiler

Publisher: Chapman and Hall/CRC

Published: 2005-11-01

Total Pages: 272

ISBN-13: 9781584885603

DOWNLOAD EBOOK

Presenting new results along with research spanning five decades, Fractional Cauchy Transforms provides a full treatment of the topic, from its roots in classical complex analysis to its current state. Self-contained, it includes introductory material and classical results, such as those associated with complex-valued measures on the unit circle, that form the basis of the developments that follow. The authors focus on concrete analytic questions, with functional analysis providing the general framework. After examining basic properties, the authors study integral means and relationships between the fractional Cauchy transforms and the Hardy and Dirichlet spaces. They then study radial and nontangential limits, followed by chapters devoted to multipliers, composition operators, and univalent functions. The final chapter gives an analytic characterization of the family of Cauchy transforms when considered as functions defined in the complement of the unit circle. About the authors: Rita A. Hibschweiler is a Professor in the Department of Mathematics and Statistics at the University of New Hampshire, Durham, USA. Thomas H. MacGregor is Professor Emeritus, State University of New York at Albany and a Research Associate at Bowdoin College, Brunswick, Maine, USA.\


The Cauchy Problem in General Relativity

The Cauchy Problem in General Relativity

Author: Hans Ringström

Publisher: European Mathematical Society

Published: 2009

Total Pages: 310

ISBN-13: 9783037190531

DOWNLOAD EBOOK

The general theory of relativity is a theory of manifolds equipped with Lorentz metrics and fields which describe the matter content. Einstein's equations equate the Einstein tensor (a curvature quantity associated with the Lorentz metric) with the stress energy tensor (an object constructed using the matter fields). In addition, there are equations describing the evolution of the matter. Using symmetry as a guiding principle, one is naturally led to the Schwarzschild and Friedmann-Lemaitre-Robertson-Walker solutions, modelling an isolated system and the entire universe respectively. In a different approach, formulating Einstein's equations as an initial value problem allows a closer study of their solutions. This book first provides a definition of the concept of initial data and a proof of the correspondence between initial data and development. It turns out that some initial data allow non-isometric maximal developments, complicating the uniqueness issue. The second half of the book is concerned with this and related problems, such as strong cosmic censorship. The book presents complete proofs of several classical results that play a central role in mathematical relativity but are not easily accessible to those without prior background in the subject. Prerequisites are a good knowledge of basic measure and integration theory as well as the fundamentals of Lorentz geometry. The necessary background from the theory of partial differential equations and Lorentz geometry is included.


The Radon Transform

The Radon Transform

Author: Sigurdur Helgason

Publisher: Springer Science & Business Media

Published: 1999-08-01

Total Pages: 214

ISBN-13: 9780817641092

DOWNLOAD EBOOK

The Radon transform is an important topic in integral geometry which deals with the problem of expressing a function on a manifold in terms of its integrals over certain submanifolds. Solutions to such problems have a wide range of applications, namely to partial differential equations, group representations, X-ray technology, nuclear magnetic resonance scanning, and tomography. This second edition, significantly expanded and updated, presents new material taking into account some of the progress made in the field since 1980. Aimed at beginning graduate students, this monograph will be useful in the classroom or as a resource for self-study. Readers will find here an accessible introduction to Radon transform theory, an elegant topic in integral geometry.


The Radon Transform

The Radon Transform

Author: Ronny Ramlau

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2019-06-17

Total Pages: 348

ISBN-13: 3110560852

DOWNLOAD EBOOK

In 1917, Johann Radon published his fundamental work, where he introduced what is now called the Radon transform. Including important contributions by several experts, this book reports on ground-breaking developments related to the Radon transform throughout these years, and also discusses novel mathematical research topics and applications for the next century.


Hermitian Analysis

Hermitian Analysis

Author: John P. D'Angelo

Publisher: Springer Science & Business Media

Published: 2013-09-24

Total Pages: 211

ISBN-13: 1461485266

DOWNLOAD EBOOK

​​Hermitian Analysis: From Fourier Series to Cauchy-Riemann Geometry provides a coherent, integrated look at various topics from undergraduate analysis. It begins with Fourier series, continues with Hilbert spaces, discusses the Fourier transform on the real line, and then turns to the heart of the book, geometric considerations. This chapter includes complex differential forms, geometric inequalities from one and several complex variables, and includes some of the author's results. The concept of orthogonality weaves the material into a coherent whole. This textbook will be a useful resource for upper-undergraduate students who intend to continue with mathematics, graduate students interested in analysis, and researchers interested in some basic aspects of CR Geometry. The inclusion of several hundred exercises makes this book suitable for a capstone undergraduate Honors class.​