The Boundary Function Method for Singular Perturbed Problems

The Boundary Function Method for Singular Perturbed Problems

Author: Adelaida B. Vasil'eva

Publisher: SIAM

Published: 1995-01-01

Total Pages: 234

ISBN-13: 9781611970784

DOWNLOAD EBOOK

This is the first book published in English devoted solely to the boundary function method, which is one of the asymptotic methods. This method provides an effective and simple way to obtain asymptotic approximations for the solutions of certain ordinary and partial differential equations containing small parameters in front of the highest derivatives. These equations, called singularly perturbed equations, are often used in modeling. In addition to numerous examples, the book includes discussions on singularly perturbed problems from chemical kinetics and heat conduction, semiconductor device modeling, and mathematical biology. The book also contains a variety of original ideas and explicit calculations previously available only in journal literature, as well as many concrete applied problems illustrating the boundary function method algorithms. Quite general asymptotic results described in the book are rigorous in the sense that, along with the asymptotic algorithms, in most cases the theorems on estimation of the remainder terms are presented. A survey of results of Russian mathematicians on the subject is provided; many of these results are not well known in the West. Based on the Russian edition of the textbook by Vasil'eva and Butuzov, this American edition, prepared by Kalachev, differs in many aspects. The text of the book has been revised substantially, some new material has been added to every chapter, and more examples, exercises, and new references on asymptotic methods and their applications have been included.


Singular Perturbations and Boundary Layers

Singular Perturbations and Boundary Layers

Author: Gung-Min Gie

Publisher: Springer

Published: 2018-11-21

Total Pages: 424

ISBN-13: 3030006387

DOWNLOAD EBOOK

Singular perturbations occur when a small coefficient affects the highest order derivatives in a system of partial differential equations. From the physical point of view singular perturbations generate in the system under consideration thin layers located often but not always at the boundary of the domains that are called boundary layers or internal layers if the layer is located inside the domain. Important physical phenomena occur in boundary layers. The most common boundary layers appear in fluid mechanics, e.g., the flow of air around an airfoil or a whole airplane, or the flow of air around a car. Also in many instances in geophysical fluid mechanics, like the interface of air and earth, or air and ocean. This self-contained monograph is devoted to the study of certain classes of singular perturbation problems mostly related to thermic, fluid mechanics and optics and where mostly elliptic or parabolic equations in a bounded domain are considered. This book is a fairly unique resource regarding the rigorous mathematical treatment of boundary layer problems. The explicit methodology developed in this book extends in many different directions the concept of correctors initially introduced by J. L. Lions, and in particular the lower- and higher-order error estimates of asymptotic expansions are obtained in the setting of functional analysis. The review of differential geometry and treatment of boundary layers in a curved domain is an additional strength of this book. In the context of fluid mechanics, the outstanding open problem of the vanishing viscosity limit of the Navier-Stokes equations is investigated in this book and solved for a number of particular, but physically relevant cases. This book will serve as a unique resource for those studying singular perturbations and boundary layer problems at the advanced graduate level in mathematics or applied mathematics and may be useful for practitioners in other related fields in science and engineering such as aerodynamics, fluid mechanics, geophysical fluid mechanics, acoustics and optics.


Fitted Numerical Methods For Singular Perturbation Problems: Error Estimates In The Maximum Norm For Linear Problems In One And Two Dimensions (Revised Edition)

Fitted Numerical Methods For Singular Perturbation Problems: Error Estimates In The Maximum Norm For Linear Problems In One And Two Dimensions (Revised Edition)

Author: John J H Miller

Publisher: World Scientific

Published: 2012-02-29

Total Pages: 191

ISBN-13: 9814452777

DOWNLOAD EBOOK

Since the first edition of this book, the literature on fitted mesh methods for singularly perturbed problems has expanded significantly. Over the intervening years, fitted meshes have been shown to be effective for an extensive set of singularly perturbed partial differential equations. In the revised version of this book, the reader will find an introduction to the basic theory associated with fitted numerical methods for singularly perturbed differential equations. Fitted mesh methods focus on the appropriate distribution of the mesh points for singularly perturbed problems. The global errors in the numerical approximations are measured in the pointwise maximum norm. The fitted mesh algorithm is particularly simple to implement in practice, but the theory of why these numerical methods work is far from simple. This book can be used as an introductory text to the theory underpinning fitted mesh methods.


Robust Numerical Methods for Singularly Perturbed Differential Equations

Robust Numerical Methods for Singularly Perturbed Differential Equations

Author: Hans-Görg Roos

Publisher: Springer Science & Business Media

Published: 2008-09-17

Total Pages: 599

ISBN-13: 3540344675

DOWNLOAD EBOOK

This new edition incorporates new developments in numerical methods for singularly perturbed differential equations, focusing on linear convection-diffusion equations and on nonlinear flow problems that appear in computational fluid dynamics.


Hp-Finite Element Methods for Singular Perturbations

Hp-Finite Element Methods for Singular Perturbations

Author: Jens M. Melenk

Publisher: Springer Science & Business Media

Published: 2002-10-10

Total Pages: 340

ISBN-13: 9783540442011

DOWNLOAD EBOOK

Many partial differential equations arising in practice are parameter-dependent problems that are of singularly perturbed type. Prominent examples include plate and shell models for small thickness in solid mechanics, convection-diffusion problems in fluid mechanics, and equations arising in semi-conductor device modelling. Common features of these problems are layers and, in the case of non-smooth geometries, corner singularities. Mesh design principles for the efficient approximation of both features by the hp-version of the finite element method (hp-FEM) are proposed in this volume. For a class of singularly perturbed problems on polygonal domains, robust exponential convergence of the hp-FEM based on these mesh design principles is established rigorously.


Multiple Scale and Singular Perturbation Methods

Multiple Scale and Singular Perturbation Methods

Author: J.K. Kevorkian

Publisher: Springer

Published: 1996-05-15

Total Pages: 634

ISBN-13: 0387942025

DOWNLOAD EBOOK

This book is a revised and updated version, including a substantial portion of new material, of our text Perturbation Methods in Applied Mathematics (Springer Verlag, 1981). We present the material at a level that assumes some familiarity with the basics of ordinary and partial differential equations. Some of the more advanced ideas are reviewed as needed; therefore this book can serve as a text in either an advanced undergraduate course or a graduate-level course on the subject. Perturbation methods, first used by astronomers to predict the effects of small disturbances on the nominal motions of celestial bodies, have now become widely used analytical tools in virtually all branches of science. A problem lends itself to perturbation analysis if it is "close" to a simpler problem that can be solved exactly. Typically, this closeness is measured by the occurrence of a small dimensionless parameter, E, in the governing system (consisting of differential equations and boundary conditions) so that for E = 0 the resulting system is exactly solvable. The main mathematical tool used is asymptotic expansion with respect to a suitable asymptotic sequence of functions of E. In a regular perturbation problem, a straightforward procedure leads to a system of differential equations and boundary conditions for each term in the asymptotic expansion. This system can be solved recursively, and the accuracy of the result improves as E gets smaller, for all values of the independent variables throughout the domain of interest. We discuss regular perturbation problems in the first chapter.


Singular Perturbation Methods for Ordinary Differential Equations

Singular Perturbation Methods for Ordinary Differential Equations

Author: Robert E., Jr. O'Malley

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 234

ISBN-13: 1461209773

DOWNLOAD EBOOK

This book results from various lectures given in recent years. Early drafts were used for several single semester courses on singular perturbation meth ods given at Rensselaer, and a more complete version was used for a one year course at the Technische Universitat Wien. Some portions have been used for short lecture series at Universidad Central de Venezuela, West Vir ginia University, the University of Southern California, the University of California at Davis, East China Normal University, the University of Texas at Arlington, Universita di Padova, and the University of New Hampshire, among other places. As a result, I've obtained lots of valuable feedback from students and listeners, for which I am grateful. This writing continues a pattern. Earlier lectures at Bell Laboratories, at the University of Edin burgh and New York University, and at the Australian National University led to my earlier works (1968, 1974, and 1978). All seem to have been useful for the study of singular perturbations, and I hope the same will be true of this monograph. I've personally learned much from reading and analyzing the works of others, so I would especially encourage readers to treat this book as an introduction to a diverse and exciting literature. The topic coverage selected is personal and reflects my current opin ions. An attempt has been made to encourage a consistent method of ap proaching problems, largely through correcting outer limits in regions of rapid change. Formal proofs of correctness are not emphasized.


Singular Perturbation Methods in Control

Singular Perturbation Methods in Control

Author: Petar Kokotovic

Publisher: SIAM

Published: 1999-01-01

Total Pages: 386

ISBN-13: 9781611971118

DOWNLOAD EBOOK

Singular perturbations and time-scale techniques were introduced to control engineering in the late 1960s and have since become common tools for the modeling, analysis, and design of control systems. In this SIAM Classics edition of the 1986 book, the original text is reprinted in its entirety (along with a new preface), providing once again the theoretical foundation for representative control applications. This book continues to be essential in many ways. It lays down the foundation of singular perturbation theory for linear and nonlinear systems, it presents the methodology in a pedagogical way that is not available anywhere else, and it illustrates the theory with many solved examples, including various physical examples and applications. So while new developments may go beyond the topics covered in this book, they are still based on the methodology described here, which continues to be their common starting point.