Blow-Up in Quasilinear Parabolic Equations

Blow-Up in Quasilinear Parabolic Equations

Author: A. A. Samarskii

Publisher: Walter de Gruyter

Published: 2011-06-24

Total Pages: 561

ISBN-13: 3110889862

DOWNLOAD EBOOK

The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich and Z. Janko, Groups of Prime Power Order, Volume 6 (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Boštjan Gabrovšek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)


Blow-up Theories for Semilinear Parabolic Equations

Blow-up Theories for Semilinear Parabolic Equations

Author: Bei Hu

Publisher: Springer

Published: 2011-03-17

Total Pages: 137

ISBN-13: 364218460X

DOWNLOAD EBOOK

There is an enormous amount of work in the literature about the blow-up behavior of evolution equations. It is our intention to introduce the theory by emphasizing the methods while seeking to avoid massive technical computations. To reach this goal, we use the simplest equation to illustrate the methods; these methods very often apply to more general equations.


Blow-up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrodinger Equations

Blow-up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrodinger Equations

Author: Victor A. Galaktionov

Publisher: CRC Press

Published: 2014-09-22

Total Pages: 565

ISBN-13: 1482251736

DOWNLOAD EBOOK

Blow-up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrodinger Equations shows how four types of higher-order nonlinear evolution partial differential equations (PDEs) have many commonalities through their special quasilinear degenerate representations. The authors present a unified approach to deal with these quasilinear PDEs.The book


Nonlinear Parabolic and Elliptic Equations

Nonlinear Parabolic and Elliptic Equations

Author: C.V. Pao

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 786

ISBN-13: 1461530342

DOWNLOAD EBOOK

In response to the growing use of reaction diffusion problems in many fields, this monograph gives a systematic treatment of a class of nonlinear parabolic and elliptic differential equations and their applications these problems. It is an important reference for mathematicians and engineers, as well as a practical text for graduate students.


Analytical and Numerical Methods for Convection-dominated and Singularly Perturbed Problems

Analytical and Numerical Methods for Convection-dominated and Singularly Perturbed Problems

Author: Lubin Vulkov

Publisher: Nova Publishers

Published: 2000

Total Pages: 298

ISBN-13: 9781560728481

DOWNLOAD EBOOK

This volume is the Proceedings of the Workshop on Analytical and Computational Methods for Convection-Dominated and Singularly Perturbed Problems, which took place in Lozenetz, Bulgaria, 27-31 August 1998. The workshop attracted about 50 participants from 12 countries. The volume includes 13 invited lectures and 19 contributed papers presented at the workshop and thus gives an overview of the latest developments in both the theory and applications of advanced numerical methods to problems having boundary and interior layers. There was an emphasis on experiences from the numerical analysis of such problems and on theoretical developments. The aim of the workshop was to provide an opportunity for scientists from the East and the West, who develop robust methods for singularly perturbed and related problems and also who apply these methods to real-life problems, to discuss recent achievements in this area and to exchange ideas with a view of possible research co-operation.


Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applications

Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applications

Author: Victor A. Galaktionov

Publisher: CRC Press

Published: 2004-05-24

Total Pages: 383

ISBN-13: 0203998065

DOWNLOAD EBOOK

Unlike the classical Sturm theorems on the zeros of solutions of second-order ODEs, Sturm's evolution zero set analysis for parabolic PDEs did not attract much attention in the 19th century, and, in fact, it was lost or forgotten for almost a century. Briefly revived by Plya in the 1930's and rediscovered in part several times since, it was not un


Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics

Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics

Author: Victor A. Galaktionov

Publisher: CRC Press

Published: 2006-11-02

Total Pages: 530

ISBN-13: 1420011626

DOWNLOAD EBOOK

Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics is the first book to provide a systematic construction of exact solutions via linear invariant subspaces for nonlinear differential operators. Acting as a guide to nonlinear evolution equations and models from physics and mechanics, the book


Evolution PDEs with Nonstandard Growth Conditions

Evolution PDEs with Nonstandard Growth Conditions

Author: Stanislav Antontsev

Publisher: Springer

Published: 2015-04-01

Total Pages: 417

ISBN-13: 9462391122

DOWNLOAD EBOOK

This monograph offers the reader a treatment of the theory of evolution PDEs with nonstandard growth conditions. This class includes parabolic and hyperbolic equations with variable or anisotropic nonlinear structure. We develop methods for the study of such equations and present a detailed account of recent results. An overview of other approaches to the study of PDEs of this kind is provided. The presentation is focused on the issues of existence and uniqueness of solutions in appropriate function spaces and on the study of the specific qualitative properties of solutions, such as localization in space and time, extinction in a finite time and blow-up, or nonexistence of global in time solutions. Special attention is paid to the study of the properties intrinsic to solutions of equations with nonstandard growth.


Singular Solutions of Nonlinear Elliptic and Parabolic Equations

Singular Solutions of Nonlinear Elliptic and Parabolic Equations

Author: Alexander A. Kovalevsky

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2016-03-21

Total Pages: 448

ISBN-13: 3110332248

DOWNLOAD EBOOK

This monograph looks at several trends in the investigation of singular solutions of nonlinear elliptic and parabolic equations. It discusses results on the existence and properties of weak and entropy solutions for elliptic second-order equations and some classes of fourth-order equations with L1-data and questions on the removability of singularities of solutions to elliptic and parabolic second-order equations in divergence form. It looks at localized and nonlocalized singularly peaking boundary regimes for different classes of quasilinear parabolic second- and high-order equations in divergence form. The book will be useful for researchers and post-graduate students that specialize in the field of the theory of partial differential equations and nonlinear analysis. Contents: Foreword Part I: Nonlinear elliptic equations with L^1-data Nonlinear elliptic equations of the second order with L^1-data Nonlinear equations of the fourth order with strengthened coercivity and L^1-data Part II: Removability of singularities of the solutions of quasilinear elliptic and parabolic equations of the second order Removability of singularities of the solutions of quasilinear elliptic equations Removability of singularities of the solutions of quasilinear parabolic equations Quasilinear elliptic equations with coefficients from the Kato class Part III: Boundary regimes with peaking for quasilinear parabolic equations Energy methods for the investigation of localized regimes with peaking for parabolic second-order equations Method of functional inequalities in peaking regimes for parabolic equations of higher orders Nonlocalized regimes with singular peaking Appendix: Formulations and proofs of the auxiliary results Bibliography


Numerical Analysis and Its Applications

Numerical Analysis and Its Applications

Author: Zhilin Li

Publisher: Springer

Published: 2005-02-07

Total Pages: 642

ISBN-13: 3540318526

DOWNLOAD EBOOK

This book constitutes the thoroughly refereed post-proceedings of the Third International Conference on Numerical Analysis and Its Applications, NAA 2004, held in Rousse, Bulgaria in June/July 2004. The 68 revised full papers presented together with 8 invited papers were carefully selected during two rounds of reviewing and improvement. All current aspects of numerical analysis are addressed. Among the application fields covered are computational sciences and engineering, chemistry, physics, economics, simulation, fluid dynamics, visualization, etc.