Advances in Botanical Research publishes in-depth and up-to-date reviews on a wide range of topics in plant sciences. Currently in its 76th volume, the series features several reviews by recognized experts on all aspects of plant genetics, biochemistry, cell biology, molecular biology, physiology and ecology. - Publishes in-depth and up-to-date reviews on a wide range of topics in plant sciences - Contains commentary by recognized experts on all aspects of plant genetics, biochemistry, cell biology, molecular biology, physiology, and ecology - This volume features reviews of the fast moving field of plant cyclotides
BIOPROSPECTING OF PLANT BIODIVERSITY FOR INDUSTRIAL MOLECULES A comprehensive collection of recent translational research on bioresource utilization and ecological sustainability Bioprospecting of Plant Biodiversity for Industrial Molecules provides an up-to-date overview of the ongoing search for biodiverse organic compounds for use in pharmaceuticals, bioceuticals, agriculture, and other commercial applications. Bringing together work from a panel of international contributors, this comprehensive monograph covers natural compounds of plants, endophyte enzymes and their applications in industry, plant bioprospecting in cosmetics, marine bioprospecting of seaweeds, and more. Providing global perspectives on bioprospecting of plant biodiversity, the authors present research on enzymes, mineral micro-nutrients, biopesticides, algal biomass, and other bioactive molecules. In-depth chapters assess the health impacts and ecological sustainability of the various biomolecules and identify existing and possible applications ranging from ecological restoration to production of essential oils and cosmetics. Other topics include, bio-energy crops as alternative fuel resources, the role of plants in phytoremediation of industrial waste, and the industrial applications of endophyte enzymes. This comprehensive resource: Includes a through introduction to plant biodiversity and bioprospecting Will further the knowledge of application of different plants and improve research investigation techniques. Summarizes novel approaches for researchers in food science, microbiology, biochemistry, and biotechnology Bioprospecting of Plant Biodiversity for Industrial Molecules is an indispensable compendium of biological research for scientists, researchers, graduate and postgraduate students, and academics in the areas of microbiology, food biotechnology, industrial microbiology, plant biotechnology, and microbial biotechnology.
Lasso peptides form a growing family of fascinating ribosomally-synthesized and post-translationally modified peptides produced by bacteria. They contain 15 to 24 residues and share a unique interlocked topology that involves an N-terminal 7 to 9-residue macrolactam ring where the C-terminal tail is threaded and irreversibly trapped. The ring results from the condensation of the N-terminal amino group with a side-chain carboxylate of a glutamate at position 8 or 9, or an aspartate at position 7, 8 or 9. The trapping of the tail involves bulky amino acids located in the tail below and above the ring and/or disulfide bridges connecting the ring and the tail. Lasso peptides are subdivided into three subtypes depending on the absence (class II) or presence of one (class III) or two (class I) disulfide bridges. The lasso topology results in highly compact structures that give to lasso peptides an extraordinary stability towards both protease degradation and denaturing conditions. Lasso peptides are generally receptor antagonists, enzyme inhibitors and/or antibacterial or antiviral (anti-HIV) agents. The lasso scaffold and the associated biological activities shown by lasso peptides on different key targets make them promising molecules with high therapeutic potential. Their application in drug design has been exemplified by the development of an integrin antagonist based on a lasso peptide scaffold. The biosynthesis machinery of lasso peptides is therefore of high biotechnological interest, especially since such highly compact and stable structures have to date revealed inaccessible by peptide synthesis. Lasso peptides are produced from a linear precursor LasA, which undergoes a maturation process involving several steps, in particular cleavage of the leader peptide and cyclization. The post-translational modifications are ensured by a dedicated enzymatic machinery, which is composed of an ATP-dependent cysteine protease (LasB) and a lactam synthetase (LasC) that form an enzymatic complex called lasso synthetase. Microcin J25, produced by Escherichia coli AY25, is the archetype of lasso peptides and the most extensively studied. To date only around forty lasso peptides have been isolated, but genome mining approaches have revealed that they are widely distributed among Proteobacteria and Actinobacteria, particularly in Streptomyces, making available a rich resource of novel lasso peptides and enzyme machineries towards lasso topologies.
How to synthesize native and modified proteins in the test tube With contributions from a panel of experts representing a range of disciplines, Total Chemical Synthesis of Proteins presents a carefully curated collection of synthetic approaches and strategies for the total synthesis of native and modified proteins. Comprehensive in scope, this important reference explores the three main chemoselective ligation methods for assembling unprotected peptide segments, including native chemical ligation (NCL). It includes information on synthetic strategies for the complex polypeptides that constitute glycoproteins, sulfoproteins, and membrane proteins, as well as their characterization. In addition, important areas of application for total protein synthesis are detailed, such as protein crystallography, protein engineering, and biomedical research. The authors also discuss the synthetic challenges that remain to be addressed. This unmatched resource: Contains valuable insights from the pioneers in the field of chemical protein synthesis Presents proven synthetic approaches for a range of protein families Explores key applications of precisely controlled protein synthesis, including novel diagnostics and therapeutics Written for organic chemists, biochemists, biotechnologists, and molecular biologists, Total Chemical Synthesis of Proteins provides key knowledge for everyone venturing into the burgeoning field of protein design and synthetic biology.
Annotation This volume of 'Methods in Enzymology' continues the legacy of this premier serial by containing quality chapters authored by leaders in the field.
This book addresses “phyto-microbiome mediated stress regulation”. Fundamentally speaking, the microbial community’s importance for the survival of plants under stress conditions has already been confirmed. This book focuses on the roles of those rhizospheric microbiomes that are advantageous to plant developmental pathways. Gathering contributions by authors with specialized expertise in plant growth and health under stress conditions, as well as opportunistic pathogenic bacteria, the book reviews the functional aspects of rhizospheric microorganisms and how they impact plant health and disease. It offers a compendium of plant and microbial interactions at the level of multitrophic interactions, and identifies gaps between future demand and present research on plant stress. In closing, the authors highlight several directions for reshaping rhizosphere microbiomes in favor of microorganisms that are beneficial to plant growth and health.
When introduced to the human body, bioactive metabolites produced by plants for self defense bind to particular biochemical targets, most notably to proteins involved in signaling by hormones and neurotransmitters. This, essentially, is the basis for the effects of herbal medicine. While herbal medicine preparations may act by complex synergistic interactions, molecular explanations of herbal medicine efficacy and side effects ultimately require definition of the biochemical targets of individual plant bioactive constituents. Biochemical Targets of Plant Bioactive Compounds is a comprehensive and user-friendly reference guide to biochemical targets of plant defensive compounds. With 500 pages of tables, it presents a mine of succinctly summarized information relating to bioactive compound structures, plant sources, biochemical targets and physiological effects that can be readily accessed via chemical compound, plant genus, plant common name and subject indexes. With introductory chapters providing reviews of the structural diversity of plant defensive compounds and biochemistry, this book is an invaluable reference for biomedical professionals in the fields of alternative/complementary medicine, natural product chemistry, toxicology, pharmacology, and botany.
This book provides a detailed review of many different aspects of pathogens, from the effects of single base pair mutations to large-scale control options, bringing into a single volume over 100 years of findings from thousands of researchers worldwide. Diseases caused by soft rot Pectobacteriaceae (SRP) are a major cause of loss to crop, vegetables and ornamental plants worldwide, and have been found on all continents except Antarctica. While different aspects of the SRP have appeared in other books on plant disease, no book, until now, has been dedicated solely to them.