The second edition of The Biomarker Guide is a fully updated and expanded version of this essential reference. Now in two volumes, it provides a comprehensive account of the role that biomarker technology plays both in petroleum exploration and in understanding Earth history and processes. Biomarkers and Isotopes in Petroleum Exploration and Earth History itemizes parameters used to genetically correlate petroleum and interpret thermal maturity and extent of biodegradation. It documents most known petroleum systems by geologic age throughout Earth history. The Biomarker Guide is an invaluable resource for geologists, petroleum geochemists, biogeochemists, and environmental scientists.
The second volume itemizes parameters used to genetically correlate petroleum and interpret thermal maturity and extent of biodegradation. It documents most known petroleum systems by geologic age throughout Earth history.
The second edition of The Biomarker Guide is a fully updated and expanded version of this essential reference. Now in two volumes, it provides a comprehensive account of the role that biomarker technology plays both in petroleum exploration and in understanding Earth history and processes. Biomarkers and Isotopes in the Environment and Human History details the origins of biomarkers and introduces basic chemical principles relevant to their study. It discusses analytical techniques, and applications of biomarkers to environmental and archaeological problems. The Biomarker Guide is an invaluable resource for geologists, petroleum geochemists, biogeochemists, environmental scientists and archaeologists.
Biomarkers are compounds found in crude oil with structures inherited from once-living organisms. They persist in oil spills, refinery products and archaeological artifacts, and can be used to identify the origin, geological age and environmental conditions prevalent during their formation and alteration. These two volumes will be an invaluable resource for geologists, petroleum geochemists, biogeochemists, environmental and forensic scientists, natural product chemists and archaeologists. The first of two volumes of The Biomarker Guide discusses the origins of biomarkers and introduces basic chemical principles relevant to their study. It goes on to discuss analytical techniques, and the applications of biomarkers in environmental and archaeological problems.
This textbook provides a unique and thorough look at the application of chemical biomarkers to aquatic ecosystems. Defining a chemical biomarker as a compound that can be linked to particular sources of organic matter identified in the sediment record, the book indicates that the application of these biomarkers for an understanding of aquatic ecosystems consists of a biogeochemical approach that has been quite successful but underused. This book offers a wide-ranging guide to the broad diversity of these chemical biomarkers, is the first to be structured around the compounds themselves, and examines them in a connected and comprehensive way. This timely book is appropriate for advanced undergraduate and graduate students seeking training in this area; researchers in biochemistry, organic geochemistry, and biogeochemistry; researchers working on aspects of organic cycling in aquatic ecosystems; and paleoceanographers, petroleum geologists, and ecologists. Provides a guide to the broad diversity of chemical biomarkers in aquatic environments The first textbook to be structured around the compounds themselves Describes the structure, biochemical synthesis, analysis, and reactivity of each class of biomarkers Offers a selection of relevant applications to aquatic systems, including lakes, rivers, estuaries, oceans, and paleoenvironments Demonstrates the utility of using organic molecules as tracers of processes occurring in aquatic ecosystems, both modern and ancient
The Encyclopedia is a complete and authoritative reference work for this rapidly evolving field. Over 200 international scientists, each experts in their specialties, have written over 330 separate topics on different aspects of geochemistry including geochemical thermodynamics and kinetics, isotope and organic geochemistry, meteorites and cosmochemistry, the carbon cycle and climate, trace elements, geochemistry of high and low temperature processes, and ore deposition, to name just a few. The geochemical behavior of the elements is described as is the state of the art in analytical geochemistry. Each topic incorporates cross-referencing to related articles, and also has its own reference list to lead the reader to the essential articles within the published literature. The entries are arranged alphabetically, for easy access, and the subject and citation indices are comprehensive and extensive. Geochemistry applies chemical techniques and approaches to understanding the Earth and how it works. It touches upon almost every aspect of earth science, ranging from applied topics such as the search for energy and mineral resources, environmental pollution, and climate change to more basic questions such as the Earth’s origin and composition, the origin and evolution of life, rock weathering and metamorphism, and the pattern of ocean and mantle circulation. Geochemistry allows us to assign absolute ages to events in Earth’s history, to trace the flow of ocean water both now and in the past, trace sediments into subduction zones and arc volcanoes, and trace petroleum to its source rock and ultimately the environment in which it formed. The earliest of evidence of life is chemical and isotopic traces, not fossils, preserved in rocks. Geochemistry has allowed us to unravel the history of the ice ages and thereby deduce their cause. Geochemistry allows us to determine the swings in Earth’s surface temperatures during the ice ages, determine the temperatures and pressures at which rocks have been metamorphosed, and the rates at which ancient magma chambers cooled and crystallized. The field has grown rapidly more sophisticated, in both analytical techniques that can determine elemental concentrations or isotope ratios with exquisite precision and in computational modeling on scales ranging from atomic to planetary.
Chromatography is a powerful separation tool that is used in all branches of science, and is often the only means of separating components from complex mixtures. The Russian botanist Mikhail Tswett coined the term chromatography in 1906. The first analytical use of chromatography was described by James and Martin in 1952, for the use of gas chromatography for the analysis of fatty acid mixtures. A wide range of chromatographic procedures makes use of differences in size, binding affinities, charge, and other properties. Many types of chromatography have been developed. These include Column chromatography, High performance liquid chromatography (HPLC), Gas chromatography, Size exclusion chromatography, Ion exchange chromatography etc. In this book contains more details about the applications of chromatography by various research findings. Each and every topics of this book have included lists of references at the end to provide students and researchers with starting points for independent chromatography explorations. I welcome comments, criticisms, and suggestions from students, faculty and researchers.