The Art of Molecular Dynamics Simulation

The Art of Molecular Dynamics Simulation

Author: D. C. Rapaport

Publisher: Cambridge University Press

Published: 2004-04

Total Pages: 568

ISBN-13: 9780521825689

DOWNLOAD EBOOK

First time paperback of successful physics monograph. Copyright © Libri GmbH. All rights reserved.


A Practical Introduction to the Simulation of Molecular Systems

A Practical Introduction to the Simulation of Molecular Systems

Author: Martin J. Field

Publisher: Cambridge University Press

Published: 2007-07-19

Total Pages: 294

ISBN-13: 1139465813

DOWNLOAD EBOOK

Molecular simulation is a powerful tool in materials science, physics, chemistry and biomolecular fields. This updated edition provides a pragmatic introduction to a wide range of techniques for the simulation of molecular systems at the atomic level. The first part concentrates on methods for calculating the potential energy of a molecular system, with new chapters on quantum chemical, molecular mechanical and hybrid potential techniques. The second part describes methods examining conformational, dynamical and thermodynamical properties of systems, covering techniques including geometry-optimization, normal-mode analysis, molecular dynamics, and Monte Carlo simulation. Using Python, the second edition includes numerous examples and program modules for each simulation technique, allowing the reader to perform the calculations and appreciate the inherent difficulties involved in each. This is a valuable resource for researchers and graduate students wanting to know how to use atomic-scale molecular simulations. Supplementary material, including the program library and technical information, available through www.cambridge.org/9780521852524.


Understanding Molecular Simulation

Understanding Molecular Simulation

Author: Daan Frenkel

Publisher: Elsevier

Published: 2001-10-19

Total Pages: 661

ISBN-13: 0080519989

DOWNLOAD EBOOK

Understanding Molecular Simulation: From Algorithms to Applications explains the physics behind the "recipes" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique for a given application. A wide variety of tools exist, so the choice of technique requires a good understanding of the basic principles. More importantly, such understanding may greatly improve the efficiency of a simulation program. The implementation of simulation methods is illustrated in pseudocodes and their practical use in the case studies used in the text. Since the first edition only five years ago, the simulation world has changed significantly -- current techniques have matured and new ones have appeared. This new edition deals with these new developments; in particular, there are sections on: - Transition path sampling and diffusive barrier crossing to simulaterare events - Dissipative particle dynamic as a course-grained simulation technique - Novel schemes to compute the long-ranged forces - Hamiltonian and non-Hamiltonian dynamics in the context constant-temperature and constant-pressure molecular dynamics simulations - Multiple-time step algorithms as an alternative for constraints - Defects in solids - The pruned-enriched Rosenbluth sampling, recoil-growth, and concerted rotations for complex molecules - Parallel tempering for glassy Hamiltonians Examples are included that highlight current applications and the codes of case studies are available on the World Wide Web. Several new examples have been added since the first edition to illustrate recent applications. Questions are included in this new edition. No prior knowledge of computer simulation is assumed.


Computational Molecular Dynamics: Challenges, Methods, Ideas

Computational Molecular Dynamics: Challenges, Methods, Ideas

Author: Peter Deuflhard

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 500

ISBN-13: 3642583601

DOWNLOAD EBOOK

On May 21-24, 1997 the Second International Symposium on Algorithms for Macromolecular Modelling was held at the Konrad Zuse Zentrum in Berlin. The event brought together computational scientists in fields like biochemistry, biophysics, physical chemistry, or statistical physics and numerical analysts as well as computer scientists working on the advancement of algorithms, for a total of over 120 participants from 19 countries. In the course of the symposium, the speakers agreed to produce a representative volume that combines survey articles and original papers (all refereed) to give an impression of the present state of the art of Molecular Dynamics. The 29 articles of the book reflect the main topics of the Berlin meeting which were i) Conformational Dynamics, ii) Thermodynamic Modelling, iii) Advanced Time-Stepping Algorithms, iv) Quantum-Classical Simulations and Fast Force Field and v) Fast Force Field Evaluation.


Numerical Simulation in Molecular Dynamics

Numerical Simulation in Molecular Dynamics

Author: Michael Griebel

Publisher: Springer Science & Business Media

Published: 2007-08-16

Total Pages: 472

ISBN-13: 3540680950

DOWNLOAD EBOOK

This book details the necessary numerical methods, the theoretical background and foundations and the techniques involved in creating computer particle models, including linked-cell method, SPME-method, tree codes, amd multipol technique. It illustrates modeling, discretization, algorithms and their parallel implementation with MPI on computer systems with distributed memory. The text offers step-by-step explanations of numerical simulation, providing illustrative code examples. With the description of the algorithms and the presentation of the results of various simulations from fields such as material science, nanotechnology, biochemistry and astrophysics, the reader of this book will learn how to write programs capable of running successful experiments for molecular dynamics.


Molecular Modeling and Simulation

Molecular Modeling and Simulation

Author: Tamar Schlick

Publisher: Springer Science & Business Media

Published: 2013-04-18

Total Pages: 669

ISBN-13: 0387224645

DOWNLOAD EBOOK

Very broad overview of the field intended for an interdisciplinary audience; Lively discussion of current challenges written in a colloquial style; Author is a rising star in this discipline; Suitably accessible for beginners and suitably rigorous for experts; Features extensive four-color illustrations; Appendices featuring homework assignments and reading lists complement the material in the main text


Ab Initio Molecular Dynamics

Ab Initio Molecular Dynamics

Author: Dominik Marx

Publisher: Cambridge University Press

Published: 2009-04-30

Total Pages: 503

ISBN-13: 1139477196

DOWNLOAD EBOOK

Ab initio molecular dynamics revolutionized the field of realistic computer simulation of complex molecular systems and processes, including chemical reactions, by unifying molecular dynamics and electronic structure theory. This book provides the first coherent presentation of this rapidly growing field, covering a vast range of methods and their applications, from basic theory to advanced methods. This fascinating text for graduate students and researchers contains systematic derivations of various ab initio molecular dynamics techniques to enable readers to understand and assess the merits and drawbacks of commonly used methods. It also discusses the special features of the widely used Car–Parrinello approach, correcting various misconceptions currently found in research literature. The book contains pseudo-code and program layout for typical plane wave electronic structure codes, allowing newcomers to the field to understand commonly used program packages and enabling developers to improve and add new features in their code.


Nonequilibrium Molecular Dynamics

Nonequilibrium Molecular Dynamics

Author: Billy D. Todd

Publisher: Cambridge University Press

Published: 2017-03-10

Total Pages: 371

ISBN-13: 0521190096

DOWNLOAD EBOOK

This coherent collection of theory, algorithms, and illustrative results presents the field of nonequilibrium molecular dynamics in detail.


Molecular Driving Forces

Molecular Driving Forces

Author: Ken Dill

Publisher: Garland Science

Published: 2010-10-21

Total Pages: 784

ISBN-13: 1136672990

DOWNLOAD EBOOK

Molecular Driving Forces, Second Edition E-book is an introductory statistical thermodynamics text that describes the principles and forces that drive chemical and biological processes. It demonstrates how the complex behaviors of molecules can result from a few simple physical processes, and how simple models provide surprisingly accurate insights into the workings of the molecular world. Widely adopted in its First Edition, Molecular Driving Forces is regarded by teachers and students as an accessible textbook that illuminates underlying principles and concepts. The Second Edition includes two brand new chapters: (1) "Microscopic Dynamics" introduces single molecule experiments; and (2) "Molecular Machines" considers how nanoscale machines and engines work. "The Logic of Thermodynamics" has been expanded to its own chapter and now covers heat, work, processes, pathways, and cycles. New practical applications, examples, and end-of-chapter questions are integrated throughout the revised and updated text, exploring topics in biology, environmental and energy science, and nanotechnology. Written in a clear and reader-friendly style, the book provides an excellent introduction to the subject for novices while remaining a valuable resource for experts.


Modern Instrumentation

Modern Instrumentation

Author: G Silverman

Publisher: CRC Press

Published: 1995-01-01

Total Pages: 476

ISBN-13: 9780750302982

DOWNLOAD EBOOK

Modern science and engineering relies heavily on understanding computer hardware and software in order to make effective use of these tools in the laboratory and industrial environments. The authors of Modern Instrumentation: A Computer Approach have succeeded in producing a highly readable source that will serve both newcomers to the field as well as experienced professionals. Including both fundamentals and applications, the book first describes the role of the computer in instrument systems and provides numerous practical examples. The second part of the book explores specific software packages and their capabilities for applications such as, instrument design and simulation, data acquisition, data processing, and the potential of artificial intelligence in instrument design. Because of the full integration of theory with practical applications of leading software packages, this book is an extremely useful reference for those who use computer-based instrument technology for data acquisition and who are involved with hardware or software development for laboratory and process control.