The Application of Mathematics to Physics and Nonlinear Science

The Application of Mathematics to Physics and Nonlinear Science

Author: Andrei Ludu

Publisher: MDPI

Published: 2020-04-16

Total Pages: 122

ISBN-13: 3039287265

DOWNLOAD EBOOK

Nonlinear science is the science of, among other exotic phenomena, unexpected and unpredictable behavior, catastrophes, complex interactions, and significant perturbations. Ocean and atmosphere dynamics, weather, many bodies in interaction, ultra-high intensity excitations, life, formation of natural patterns, and coupled interactions between components or different scales are only a few examples of systems where nonlinear science is necessary. All outstanding, self-sustained, and stable structures in space and time exist and protrude out of a regular linear background of states mainly because they identify themselves from the rest by being highly localized in range, time, configuration, states, and phase spaces. Guessing how high up you drive toward the top of the mountain by compiling your speed, road slope, and trip duration is a linear model, but predicting the occurrence around a turn of a boulder fallen on the road is a nonlinear phenomenon. In an effort to grasp and understand nonlinear phenomena, scientists have developed several mathematical approaches including inverse scattering theory, Backlund and groups of transformations, bilinear method, and several other detailed technical procedures. In this Special Issue, we introduce a few very recent approaches together with their physical meaning and applications. We present here five important papers on waves, unsteady flows, phases separation, ocean dynamics, nonlinear optic, viral dynamics, and the self-appearance of patterns for spatially extended systems, which are problems that have aroused scientists’ interest for decades, yet still cannot be predicted and have their generating mechanism and stability open to debate. The aim of this Special Issue was to present these most debated and interesting topics from nonlinear science for which, despite the existence of highly developed mathematical tools of investigation, there are still fundamental open questions.


Nonlinear Science

Nonlinear Science

Author: Alwyn Scott

Publisher: Oxford University Press, USA

Published: 1999

Total Pages: 504

ISBN-13:

DOWNLOAD EBOOK

Problems and summaries after each chapter


Nonlinear Dynamical Systems Of Mathematical Physics: Spectral And Symplectic Integrability Analysis

Nonlinear Dynamical Systems Of Mathematical Physics: Spectral And Symplectic Integrability Analysis

Author: Denis Blackmore

Publisher: World Scientific

Published: 2011-03-04

Total Pages: 563

ISBN-13: 9814462713

DOWNLOAD EBOOK

This distinctive volume presents a clear, rigorous grounding in modern nonlinear integrable dynamics theory and applications in mathematical physics, and an introduction to timely leading-edge developments in the field — including some innovations by the authors themselves — that have not appeared in any other book.The exposition begins with an introduction to modern integrable dynamical systems theory, treating such topics as Liouville-Arnold and Mischenko-Fomenko integrability. This sets the stage for such topics as new formulations of the gradient-holonomic algorithm for Lax integrability, novel treatments of classical integration by quadratures, Lie-algebraic characterizations of integrability, and recent results on tensor Poisson structures. Of particular note is the development via spectral reduction of a generalized de Rham-Hodge theory, related to Delsarte-Lions operators, leading to new Chern type classes useful for integrability analysis. Also included are elements of quantum mathematics along with applications to Whitham systems, gauge theories, hadronic string models, and a supplement on fundamental differential-geometric concepts making this volume essentially self-contained.This book is ideal as a reference and guide to new directions in research for advanced students and researchers interested in the modern theory and applications of integrable (especially infinite-dimensional) dynamical systems.


Nonlinear Dynamics

Nonlinear Dynamics

Author: H.G Solari

Publisher: Routledge

Published: 2019-01-22

Total Pages: 369

ISBN-13: 1351428306

DOWNLOAD EBOOK

Nonlinear Dynamics: A Two-Way Trip from Physics to Math provides readers with the mathematical tools of nonlinear dynamics to tackle problems in all areas of physics. The selection of topics emphasizes bifurcation theory and topological analysis of dynamical systems. The book includes real-life problems and experiments as well as exercises and work


Solitons in Mathematics and Physics

Solitons in Mathematics and Physics

Author: Alan C. Newell

Publisher: SIAM

Published: 1985-06-01

Total Pages: 259

ISBN-13: 0898711967

DOWNLOAD EBOOK

A discussion of the soliton, focusing on the properties that make it physically ubiquitous and the soliton equation mathematically miraculous.


Physics of Fractal Operators

Physics of Fractal Operators

Author: Bruce West

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 355

ISBN-13: 0387217460

DOWNLOAD EBOOK

This text describes the statistcal behavior of complex systems and shows how the fractional calculus can be used to model the behavior. The discussion emphasizes physical phenomena whose evolution is best described using the fractional calculus, such as systems with long-range spatial interactions or long-time memory. The book gives general strategies for understanding wave propagation through random media, the nonlinear response of complex materials, and the fluctuations of heat transport in heterogeneous materials.


Nonlinear Physics with Mathematica for Scientists and Engineers

Nonlinear Physics with Mathematica for Scientists and Engineers

Author: Richard H. Enns

Publisher: Springer Science & Business Media

Published: 2001-06-26

Total Pages: 720

ISBN-13: 9780817642235

DOWNLOAD EBOOK

Nonlinear physics continues to be an area of dynamic modern research, with applications to physics, engineering, chemistry, mathematics, computer science, biology, medicine and economics. In this text extensive use is made of the Mathematica computer algebra system. No prior knowledge of Mathematica or programming is assumed. This book includes 33 experimental activities that are designed to deepen and broaden the reader's understanding of nonlinear physics. These activities are correlated with Part I, the theoretical framework of the text.


Mathematical Topics on Modelling Complex Systems

Mathematical Topics on Modelling Complex Systems

Author: J. A. Tenreiro Machado

Publisher: Springer Nature

Published: 2022-06-08

Total Pages: 191

ISBN-13: 9811641692

DOWNLOAD EBOOK

This book explores recent developments in theoretical research and mathematical modelling of real-world complex systems, organized in four parts. The first part of the book is devoted to the mathematical tools for the design and analysis in engineering and social science study cases. We discuss the periodic evolutions in nonlinear chemical processes, vibro-compact systems and their behaviour, different types of metal–semiconductor self-assembled samples, made of silver nanowires and zinc oxide nanorods. The second part of the book is devoted to mathematical description and modelling of the critical events, climate change and robust emergency scales. In three chapters, we consider a climate-economy model with endogenous carbon intensity and the behaviour of Tehran Stock Exchange market under international sanctions. The third part of the book is devoted to fractional dynamic and fractional control problems. We discuss the novel operational matrix technique for variable-order fractional optimal control problems, the nonlinear variable-order time fractional convection–diffusion equation with generalized polynomials The fourth part of the book concerns solvability and inverse problems in differential and integro-differential equations. The book facilitates a better understanding of the mechanisms and phenomena in nonlinear dynamics and develops the corresponding mathematical theory to apply nonlinear design to practical engineering. It can be read by mathematicians, physicists, complex systems scientists, IT specialists, civil engineers, data scientists and urban planners.


Encyclopedia of Nonlinear Science

Encyclopedia of Nonlinear Science

Author: Alwyn Scott

Publisher: Routledge

Published: 2006-05-17

Total Pages: 1107

ISBN-13: 1135455589

DOWNLOAD EBOOK

In 438 alphabetically-arranged essays, this work provides a useful overview of the core mathematical background for nonlinear science, as well as its applications to key problems in ecology and biological systems, chemical reaction-diffusion problems, geophysics, economics, electrical and mechanical oscillations in engineering systems, lasers and nonlinear optics, fluid mechanics and turbulence, and condensed matter physics, among others.


Nonlinear Dynamics and Chaos

Nonlinear Dynamics and Chaos

Author: Steven H. Strogatz

Publisher: CRC Press

Published: 2018-05-04

Total Pages: 532

ISBN-13: 0429961111

DOWNLOAD EBOOK

This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.