The Riemann-Hilbert Problem

The Riemann-Hilbert Problem

Author: D. V. Anosov

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 202

ISBN-13: 3322929094

DOWNLOAD EBOOK

The Riemann-Hilbert problem (Hilbert's 21st problem) belongs to the theory of linear systems of ordinary differential equations in the complex domain. The problem concerns the existence of a Fuchsian system with prescribed singularities and monodromy. Hilbert was convinced that such a system always exists. However, this turned out to be a rare case of a wrong forecast made by him. In 1989 the second author (A. B.) discovered a counterexample, thus obtaining a negative solution to Hilbert's 21st problem in its original form.


Random Surfaces and Quantum Gravity

Random Surfaces and Quantum Gravity

Author: Orlando Alvarez

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 401

ISBN-13: 146153772X

DOWNLOAD EBOOK

The Cargese Workshop Random Surfaces and Quantum Gravity was held from May 27 to June 2, 1990. Little was known about string theory in the non-perturbative regime before Oetober 1989 when non-perturbative equations for the string partition functions were found by using methods based on the random triangulations of surfaees. This set of methods pro vides a deseription of non-eritical string theory or equivalently of the coupling of matter fields to quantum gravity in two dimensions. The Cargese meeting was very successful in that it provided the first opportunity to gather most of the active workers in the field for a fuH week of lectures and extensive informal discussions about these exeiting new developments. The main results were reviewed, recent advances were explained, new results and conjectures (which appear for the first time in these proceedings) were presented and discussed. Among the most important topics discussed at the workshop were: The relation of KdV theory to loop equations and the Virasoro algebra, new results in Liouville field theory, effective (1 + 1) dimensional theory for 2 - D quantum gravity coupled to c = 1 matter and its fermionization, proposal for a new geometrical interpretation of the string equation and possible definition of quantum Riemann surfaces, discussion of the string equation for the multi-matrix models, links with topological field theories of gravity, issues in using target space supersymmetry to define good theories, definition of the partition function via analytic continuation, new models of random surfaces


Encyclopaedia of Mathematics

Encyclopaedia of Mathematics

Author: Michiel Hazewinkel

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 595

ISBN-13: 9401512884

DOWNLOAD EBOOK

This is the first Supplementary volume to Kluwer's highly acclaimed Encyclopaedia of Mathematics. This additional volume contains nearly 600 new entries written by experts and covers developments and topics not included in the already published 10-volume set. These entries have been arranged alphabetically throughout. A detailed index is included in the book. This Supplementary volume enhances the existing 10-volume set. Together, these eleven volumes represent the most authoritative, comprehensive up-to-date Encyclopaedia of Mathematics available.


Fuchsian Reduction

Fuchsian Reduction

Author: Satyanad Kichenassamy

Publisher: Springer Science & Business Media

Published: 2007-09-18

Total Pages: 296

ISBN-13: 0817643524

DOWNLOAD EBOOK

This four-part text beautifully interweaves theory and applications in Fuchsian Reduction. Background results in weighted Sobolev and Holder spaces as well as Nash-Moser implicit function theorem are provided. Most chapters contain a problem section and notes with references to the literature. This volume can be used as a text in graduate courses in PDEs and/or Algebra, or as a resource for researchers working with applications to Fuchsian Reduction. The comprehensive approach features the inclusion of problems and bibliographic notes.


Solving Problems in Multiply Connected Domains

Solving Problems in Multiply Connected Domains

Author: Darren Crowdy

Publisher: SIAM

Published: 2020-04-20

Total Pages: 457

ISBN-13: 1611976154

DOWNLOAD EBOOK

Whenever two or more objects or entities—be they bubbles, vortices, black holes, magnets, colloidal particles, microorganisms, swimming bacteria, Brownian random walkers, airfoils, turbine blades, electrified drops, magnetized particles, dislocations, cracks, or heterogeneities in an elastic solid—interact in some ambient medium, they make holes in that medium. Such holey regions with interacting entities are called multiply connected. This book describes a novel mathematical framework for solving problems in two-dimensional, multiply connected regions. The framework is built on a central theoretical concept: the prime function, whose significance for the applied sciences, especially for solving problems in multiply connected domains, has been missed until recent work by the author. This monograph is a one-of-a-kind treatise on the prime function associated with multiply connected domains and how to use it in applications. The book contains many results familiar in the simply connected, or single-entity, case that are generalized naturally to any number of entities, in many instances for the first time. Solving Problems in Multiply Connected Domains is aimed at applied and pure mathematicians, engineers, physicists, and other natural scientists; the framework it describes finds application in a diverse array of contexts. The book provides a rich source of project material for undergraduate and graduate courses in the applied sciences and could serve as a complement to standard texts on advanced calculus, potential theory, partial differential equations and complex analysis, and as a supplement to texts on applied mathematical methods in engineering and science.


Discontinuous Groups and Automorphic Functions

Discontinuous Groups and Automorphic Functions

Author: Joseph Lehner

Publisher: American Mathematical Soc.

Published: 1964-12-31

Total Pages: 440

ISBN-13: 0821815083

DOWNLOAD EBOOK

Much has been written on the theory of discontinuous groups and automorphic functions since 1880, when the subject received its first formulation. The purpose of this book is to bring together in one place both the classical and modern aspects of the theory, and to present them clearly and in a modern language and notation. The emphasis in this book is on the fundamental parts of the subject. The book is directed to three classes of readers: graduate students approaching the subject for the first time, mature mathematicians who wish to gain some knowledge and understanding of automorphic function theory, and experts.