In this book the designed vision/mission with both new faith and strategic steps aims at saving us from ourselves by our further evolvement beyond sapiens limitations.
The purpose of this book is to present a new theory of mutation-driven evolution, which is based on recent advances in genomics and evolutionary developmental biology. This theory asserts that the driving force of evolution is mutation and natural selection is of secondary importance.
The essential one-volume reference to evolution The Princeton Guide to Evolution is a comprehensive, concise, and authoritative reference to the major subjects and key concepts in evolutionary biology, from genes to mass extinctions. Edited by a distinguished team of evolutionary biologists, with contributions from leading researchers, the guide contains some 100 clear, accurate, and up-to-date articles on the most important topics in seven major areas: phylogenetics and the history of life; selection and adaptation; evolutionary processes; genes, genomes, and phenotypes; speciation and macroevolution; evolution of behavior, society, and humans; and evolution and modern society. Complete with more than 100 illustrations (including eight pages in color), glossaries of key terms, suggestions for further reading on each topic, and an index, this is an essential volume for undergraduate and graduate students, scientists in related fields, and anyone else with a serious interest in evolution. Explains key topics in some 100 concise and authoritative articles written by a team of leading evolutionary biologists Contains more than 100 illustrations, including eight pages in color Each article includes an outline, glossary, bibliography, and cross-references Covers phylogenetics and the history of life; selection and adaptation; evolutionary processes; genes, genomes, and phenotypes; speciation and macroevolution; evolution of behavior, society, and humans; and evolution and modern society
Although debated since the time of Darwin, the evolutionary role of mutation is still controversial. In over 40 chapters from leading authorities in mutation and evolutionary biology, this book takes a new look at both the theoretical and experimental measurement and significance of new mutation. Deleterious, nearly neutral, beneficial, and polygenic mutations are considered in their effects on fitness, life history traits, and the composition of the gene pool. Mutation is a phenomenon that draws attention from many different disciplines. Thus, the extensive reviews of the literature will be valuable both to established researchers and to those just beginning to study this field. Through up-to-date reviews, the authors provide an insightful overview of each topic and then share their newest ideas and explore controversial aspects of mutation and the evolutionary process. From topics like gonadal mosaicism and mutation clusters to adaptive mutagenesis, mutation in cell organelles, and the level and distribution of DNA molecular changes, the foundation is set for continuing the debate about the role of mutation, fitness, and adaptability. It is a debate that will have profound consequences for our understanding of evolution.
The populations of many species of animals and plants are age-structured, i.e. the individuals present at any one time were born over a range of different times, and their fertility and survival depend on age. The properties of such populations are important for interpreting experiments and observations on the genetics of populations for animal and plant breeding, and for understanding the evolution of features of life-histories such as senescence and time of reproduction. In this new edition Brian Charlesworth provides a comprehensive review of the basic mathematical theory of the demography and genetics of age-structured populations. The mathematical level of the book is such that it will be accessible to anyone with a knowledge of basic calculus and linear algebra.
Natural selection is more than the survival of the fittest: it is a force engendering higher biological complexity. Presenting a new explanation for the tendency of life to become more complex through evolution, this book offers an introduction to the key debates in evolutionary theory, including the role of genes and sex in evolution, the adaptive reasons for senescence and death and the origin of neural information. The author argues that biological complexity increased through the process of 'modularity transfer': modular phenotypes (proteins, somatic cells, learned behaviours) evolved into new modular information carriers (regulatory proteins, neural cells, words), giving rise to new information systems and higher levels of biological organisation. Modular Evolution makes sense of the unique place of humans in evolution, both as the pinnacle of biological complexity and inventors of non-biological evolution.
This is one volume 'library' of information on molecular biology, molecular medicine, and the theory and techniques for understanding, modifying, manipulating, expressing, and synthesizing biological molecules, conformations, and aggregates. The purpose is to assist the expanding number of scientists entering molecular biology research and biotechnology applications from diverse backgrounds, including biology and medicine, as well as physics, chemistry, mathematics, and engineering.
This work explores and analyses the ways in which our ancient genes contend with, and influence, modern human life. It offers coverage of the points of contact between evolutionary biology and medical science.