This proceedings volume is a collection of papers dealing with the applications of spallation neutron sources to pure science, applied science and defense programs. The topics, ranging from accelerator technology to applications in materials science and neutrino physics, are covered by experts in their respective fields.
This publication addresses recent developments in neutron generator (NG) technology. It presents information on compact instruments with high neutron yield to be used for neutron activation analysis (NAA) and prompt gamma neutron activation analysis in combination with high count rate spectrometers. Traditional NGs have been shown to be effective for applications including borehole logging, homeland security, nuclear medicine and the on-line analysis of aluminium, coal and cement. Pulsed fast thermal neutron analysis, as well as tagged and timed neutron analysis, are additional techniques which can be applied using NG. Furthermore, NG can effectively be used for elemental analysis and is also effective for analysis of hidden materials by neutron radiography. Useful guidelines for developing NG based research laboratories are also provided in this publication.
The spallation neutron source (SNS) being built at the Oak Ridge National Laboratory (ORNL) will be by far the highest flux pulsed source of epithermal neutrons in the world when it comes on line in 2006. Although the main thrust of the science program at the SNS will be materials science, the facility could provide outstanding opportunities for research in nuclear astrophysics, fundamental symmetries, and applied nuclear physics. To review the current status of these fields and to begin to assemble the scientific case and the community of researchers for future experiments at the SNS, a workshop on ?Astrophysics, Symmetries, and Applied Physics? was held in March 2002 at the ORNL. Over 60 scientists, representing 11 US and 4 foreign universities as well as many national laboratories around the world, participated in the workshop. The proceedings describe the current state of research in those fields and the future opportunities at the SNS.