Little is available on Britain's successful AC routes and the stock built for them and with the demise of older types of rolling stock and even the preservation of some samples, this is an appropriate time for a retrospective such as this book.
The first book of its kind, Power Converters and AC Electrical Drives with Linear Neural Networks systematically explores the application of neural networks in the field of power electronics, with particular emphasis on the sensorless control of AC drives. It presents the classical theory based on space-vectors in identification, discusses control of electrical drives and power converters, and examines improvements that can be attained when using linear neural networks. The book integrates power electronics and electrical drives with artificial neural networks (ANN). Organized into four parts, it first deals with voltage source inverters and their control. It then covers AC electrical drive control, focusing on induction and permanent magnet synchronous motor drives. The third part examines theoretical aspects of linear neural networks, particularly the neural EXIN family. The fourth part highlights original applications in electrical drives and power quality, ranging from neural-based parameter estimation and sensorless control to distributed generation systems from renewable sources and active power filters. Simulation and experimental results are provided to validate the theories. Written by experts in the field, this state-of-the-art book requires basic knowledge of electrical machines and power electronics, as well as some familiarity with control systems, signal processing, linear algebra, and numerical analysis. Offering multiple paths through the material, the text is suitable for undergraduate and postgraduate students, theoreticians, practicing engineers, and researchers involved in applications of ANNs.
The bestselling author of E=mc2 weaves tales of romance, divine inspiration, and fraud through an account of the invisible force that permeates our universe—electricity—and introduces us to the virtuoso scientists who plumbed its secrets. For centuries, electricity was seen as little more than a curious property of certain substances that sparked when rubbed. Then, in the 1790s, Alessandro Volta began the scientific investigation that ignited an explosion of knowledge and invention. The force that once seemed inconsequential was revealed to be responsible for everything from the structure of the atom to the functioning of our brains. In harnessing its power, we have created a world of wonders—complete with roller coasters and radar, computer networks and psychopharmaceuticals. In Electric Universe, the great discoverers come to life in all their brilliance and idiosyncrasy, including the visionary Michael Faraday, who struggled against the prejudices of the British class system, and Samuel Morse, a painter who, before inventing the telegraph, ran for mayor of New York City on a platform of persecuting Catholics. Here too is Alan Turing, whose dream of a marvelous thinking machine—what we know as the computer—was met with indifference, and who ended his life in despair after British authorities forced him to undergo experimental treatments to “cure” his homosexuality. From the frigid waters of the Atlantic to the streets of Hamburg during a World War II firestorm to the interior of the human body, Electric Universe is a mesmerizing journey of discovery.
During the ten years since the appearance of the groundbreaking, bestselling first edition of The Electronics Handbook, the field has grown and changed tremendously. With a focus on fundamental theory and practical applications, the first edition guided novice and veteran engineers along the cutting edge in the design, production, installation, operation, and maintenance of electronic devices and systems. Completely updated and expanded to reflect recent advances, this second edition continues the tradition. The Electronics Handbook, Second Edition provides a comprehensive reference to the key concepts, models, and equations necessary to analyze, design, and predict the behavior of complex electrical devices, circuits, instruments, and systems. With 23 sections that encompass the entire electronics field, from classical devices and circuits to emerging technologies and applications, The Electronics Handbook, Second Edition not only covers the engineering aspects, but also includes sections on reliability, safety, and engineering management. The book features an individual table of contents at the beginning of each chapter, which enables engineers from industry, government, and academia to navigate easily to the vital information they need. This is truly the most comprehensive, easy-to-use reference on electronics available.
A clear explanation of the technology for producing and delivering electricity Electric Power Systems explains and illustrates how the electric grid works in a clear, straightforward style that makes highly technical material accessible. It begins with a thorough discussion of the underlying physical concepts of electricity, circuits, and complex power that serves as a foundation for more advanced material. Readers are then introduced to the main components of electric power systems, including generators, motors and other appliances, and transmission and distribution equipment such as power lines, transformers, and circuit breakers. The author explains how a whole power system is managed and coordinated, analyzed mathematically, and kept stable and reliable. Recognizing the economic and environmental implications of electric energy production and public concern over disruptions of service, this book exposes the challenges of producing and delivering electricity to help inform public policy decisions. Its discussions of complex concepts such as reactive power balance, load flow, and stability analysis, for example, offer deep insight into the complexity of electric grid operation and demonstrate how and why physics constrains economics and politics. Although this survival guide includes mathematical equations and formulas, it discusses their meaning in plain English and does not assume any prior familiarity with particular notations or technical jargon. Additional features include: * A glossary of symbols, units, abbreviations, and acronyms * Illustrations that help readers visualize processes and better understand complex concepts * Detailed analysis of a case study, including a Web reference to the case, enabling readers to test the consequences of manipulating various parameters With its clear discussion of how electric grids work, Electric Power Systems is appropriate for a broad readership of professionals, undergraduate and graduate students, government agency managers, environmental advocates, and consumers.
NPR Best Books of 2018 A teen girl and her robot embark on a cross-country mission in this illustrated science fiction story, perfect for fans of Ready Player One and Black Mirror. In late 1997, a runaway teenager and her small yellow toy robot travel west through a strange American landscape where the ruins of gigantic battle drones litter the countryside, along with the discarded trash of a high-tech consumerist society addicted to a virtual-reality system. As they approach the edge of the continent, the world outside the car window seems to unravel at an ever faster pace, as if somewhere beyond the horizon, the hollow core of civilization has finally caved in.
Awarded the Dexter Prize by the Society for the History of Technology, this book offers a comparative history of the evolution of modern electric power systems. It described large-scale technological change and demonstrates that technology cannot be understood unless placed in a cultural context.
In his latest guide to the technical issues facing boat owners, John C. Payne deals with the topic of boat AC power systems. With photos and technical drawings, the book covers such topics as AC system electrical safety, shore power systems, transformers, AC electrical panels, AC system wiring, AC diesel generators, and inverters.
This study guide is designed for students taking courses in electrical circuit analysis. The textbook includes examples, questions, and exercises that will help electrical engineering students to review and sharpen their knowledge of the subject and enhance their performance in the classroom. Offering detailed solutions, multiple methods for solving problems, and clear explanations of concepts, this hands-on guide will improve student’s problem-solving skills and basic understanding of the topics covered in electric circuit analysis courses. Exercises cover a wide selection of basic and advanced questions and problems Categorizes and orders the problems based on difficulty level, hence suitable for both knowledgeable and under-prepared students Provides detailed and instructor-recommended solutions and methods, along with clear explanations Can be used along with the core textbooks in AC circuit analysis and advanced electrical circuit analysis
This textbook explores reactive power control and voltage stability and explains how they relate to different forms of power generation and transmission. Bringing together international experts in this field, it includes chapters on electric power analysis, design and operational strategies. The book explains fundamental concepts before moving on to report on the latest theoretical findings in reactive power control, including case studies and advice on practical implementation students can use to design their own research projects. Featuring numerous worked-out examples, problems and solutions, as well as over 400 illustrations, Reactive Power Control in AC Power Systems offers an essential textbook for postgraduate students in electrical power engineering. It offers practical advice on implementing the methods discussed in the book using MATLAB and DIgSILENT, and the relevant program files are available at extras.springer.com.