The theory of the muon anomalous magnetic moment is particle physics in a nutshell. It is an interesting, exciting and difficult subject, and this book provides a comprehensive review of it. The theory of the muon anomalous magnetic moment is at the cutting edge of current research in particle physics, and any deviation between the theoretical prediction and the experimental value might be interpreted as a signal of an as-yet-unknown new physics.
Dr. S. B. Patel Is Professor Of Physics, Bombay University. He Has Taught Physics For More Than Twenty Years At The B. Sc. And M.Sc Levels At Ramnarain Ruia College, Bombay. He Earned His Ph. D In Nuclear Physics From Tifr-Bombay University In 1976. Later He Was Involved In Post-Doctoral Research At The Lawrence Berkeley Laboratory, California. His Field Of Specialization Is Nuclear Spectroscopy.
Dr. S. B. Patel Is Professor Of Physics, Bombay University. He Has Taught Physics For More Than Twenty Years At The B. Sc. And M.Sc Levels At Ramnarain Ruia College, Bombay. He Earned His Ph. D In Nuclear Physics From Tifr-Bombay University In 1976. Later He Was Involved In Post-Doctoral Research At The Lawrence Berkeley Laboratory, California. His Field Of Specialization Is Nuclear Spectroscopy.
Topological geometrodynamics (TGD) is a modification of the theory of general relativity inspired by the problems related to the definition of inertial and gravitational energies in the earlier hypotheses. TGD is also a generalization of super string models. TGD brings forth an elegant theoretical projection of reality and builds upon the work by renowned scientists (Wheeler, Feynman, Penrose, Einstein, Josephson to name a few). In TGD, Physical space-time planes are visualized as four-dimensional surfaces in a certain 8-dimensional space (H). The choice of H is fixed by symmetries of standard model and leads to a geometric mapping of known classical fields and elementary particle numbers. TGD differs from Einstein’s geometrodynamics in the way space-time planes or ‘sheets’ are lumped together. Extending the theory based on fusing number concepts implies a further generalisation of the space-time concept allowing the identification of space-time correlates of cognition and intentionality. Additionally, zero energy ontology forces an extension of quantum measurement theory to a theory of consciousness and a hierarchy of phases is identified. Dark matter is thus predicted with far reaching implications for the understanding of consciousness and living systems. Therefore, it sets a solid foundation for modeling our universe in geometric terms. Topological Geometrodynamics: An Overview explains basic and advanced concepts about TGD. The book covers introductory information and classical TGD concepts before delving into twistor-space theory, particle physics, infinite-dimensional spinor geometry, generalized number theory, Planck constants, and the applications of TGD theory in research. The book is a valuable guide to TDG theory for researchers and advanced graduates in theoretical physics and cosmology.