Comparative Climatology of Terrestrial Planets

Comparative Climatology of Terrestrial Planets

Author: Stephen J. Mackwell

Publisher: University of Arizona Press

Published: 2014-01-30

Total Pages: 709

ISBN-13: 0816530599

DOWNLOAD EBOOK

"Through the contributions of more than sixty leading experts in the field, Comparative Climatology of Terrestrial Planets sets forth the foundations for this emerging new science and brings the reader to the forefront of our current understanding of atmospheric formation and climate evolution"--Provided by publisher.


Geology and Habitability of Terrestrial Planets

Geology and Habitability of Terrestrial Planets

Author: Kathryn E. Fishbaugh

Publisher: Springer Science & Business Media

Published: 2007-09-07

Total Pages: 307

ISBN-13: 0387742883

DOWNLOAD EBOOK

Given the universal interest in whether extraterrestrial life has developed or could eventually develop, it is vital that an examination of planetary habitability go beyond simple assumptions. This book has resulted from a workshop at the International Space Science Institute (ISSI) which brought together experts to discuss the multi-faceted problem of how the habitability of a planet co-evolves with the geology of the surface and interior, the atmosphere, and the magnetosphere.


Comparative Climatology of Terrestrial Planets

Comparative Climatology of Terrestrial Planets

Author: Stephen J. Mackwell

Publisher: University of Arizona Press

Published: 2014-01-25

Total Pages: 1699

ISBN-13: 0816599750

DOWNLOAD EBOOK

The early development of life, a fundamental question for humankind, requires the presence of a suitable planetary climate. Our understanding of how habitable planets come to be begins with the worlds closest to home. Venus, Earth, and Mars differ only modestly in their mass and distance from the Sun, yet their current climates could scarcely be more divergent. Only Earth has abundant liquid water, Venus has a runaway greenhouse, and evidence for life-supporting conditions on Mars points to a bygone era. In addition, an Earth-like hydrologic cycle has been revealed in a surprising place: Saturn’s cloud-covered satellite Titan has liquid hydrocarbon rain, lakes, and river networks. Deducing the initial conditions for these diverse worlds and unraveling how and why they diverged to their current climates is a challenge at the forefront of planetary science. Through the contributions of more than sixty leading experts in the field, Comparative Climatology of Terrestrial Planets sets forth the foundations for this emerging new science and brings the reader to the forefront of our current understanding of atmospheric formation and climate evolution. Particular emphasis is given to surface-atmosphere interactions, evolving stellar flux, mantle processes, photochemistry, and interactions with the interplanetary environment, all of which influence the climatology of terrestrial planets. From this cornerstone, both current professionals and most especially new students are brought to the threshold, enabling the next generation of new advances in our own solar system and beyond. Contents Part I: Foundations Jim Hansen Mark Bullock Scot Rafkin Caitlin Griffith Shawn Domagal-Goldman and Antigona Segura Kevin Zahnle Part II: The Greenhouse Effect and Atmospheric Dynamics Curt Covey G. Schubert and J. Mitchell Tim Dowling Francois Forget and Sebastien Lebonnois Vladimir Krasnopolsky Adam Showman Part III: Clouds, Hazes, and Precipitation Larry Esposito A. Määttänen, K. Pérot, F. Montmessin, and A. Hauchecorne Nilton Renno Zibi Turtle Mark Marley Part IV: Surface-Atmosphere Interactions Colin Goldblatt Teresa Segura et al. John Grotzinger Adrian Lenardic D. A. Brain, F. Leblanc, J. G. Luhmann, T. E. Moore, and F. Tian Part V: Solar Influences on Planetary Climate Aaron Zent Jerry Harder F. Tian, E. Chassefiere, F. Leblanc, and D. Brain David Des Marais


From Dust to Terrestrial Planets

From Dust to Terrestrial Planets

Author: Willy Benz

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 426

ISBN-13: 9401141460

DOWNLOAD EBOOK

The workshop "From Dust to Terrestrial Planets" was initiated by a working group of planetary scientists invited to ISSI by Johannes Geiss in November 1997. The group split to focus on three topics, one of which was the history of the early solar system, including the formation of the terrestrial planets in the inner solar system. Willy Benz, Gunter Lugmair, and Frank Podosek were invited to convene planetary scientists, astrophysicists, and cosmochemists to synthesize the current knowledge on the origin and evolution of our inner planetary system. The convenors raised the interest of scientists from all over the world in the detailed assessment of the available astronomical, chronological, geochemical and dynamical constraints of the first period of inner solar system evolution. In partic ular, this included appraisal of the newest results from astronomical observations by the Hubble Space Telescope, the Infrared Space Observatory, and other space and ground-based facilities of solar-like systems and nebular disks, possibly repre senting early stages of the solar accretion disk and planet formation. At the same time, the current models of the origin, evolution, transport, and accretion processes of circum stellar disks were presented. This included the new insights provided by the recent discovery of extrasolar giant planets, which were considered insofar as they are relevant to the overall dynamics of the inner part of the solar system.


The Early Evolution of the Atmospheres of Terrestrial Planets

The Early Evolution of the Atmospheres of Terrestrial Planets

Author: J.M. Trigo-Rodriguez

Publisher: Springer Science & Business Media

Published: 2013-05-29

Total Pages: 188

ISBN-13: 1461451914

DOWNLOAD EBOOK

“The Early Evolution of the Atmospheres of Terrestrial Planets” presents the main processes participating in the atmospheric evolution of terrestrial planets. A group of experts in the different fields provide an update of our current knowledge on this topic. Several papers in this book discuss the key role of nitrogen in the atmospheric evolution of terrestrial planets. The earliest setting and evolution of planetary atmospheres of terrestrial planets is directly associated with accretion, chemical differentiation, outgassing, stochastic impacts, and extremely high energy fluxes from their host stars. This book provides an overview of the present knowledge of the initial atmospheric composition of the terrestrial planets. Additionally it includes some papers about the current exoplanet discoveries and provides additional clues to our understanding of Earth’s transition from a hot accretionary phase into a habitable world. All papers included were reviewed by experts in their respective fields. We are living in an epoch of important exoplanet discoveries, but current properties of these exoplanets do not match our scientific predictions using standard terrestrial planet models. This book deals with the main physio-chemical signatures and processes that could be useful to better understand the formation of rocky planets.


Planets, Stars and Stellar Systems

Planets, Stars and Stellar Systems

Author: Linda M. French

Publisher: Springer

Published: 2013-02-27

Total Pages: 0

ISBN-13: 9789400756052

DOWNLOAD EBOOK

This is volume 3 of Planets, Stars and Stellar Systems, a six-volume compendium of modern astronomical research covering subjects of key interest to the main fields of contemporary astronomy. This volume on “Solar and Stellar Planetary Systems” edited by Linda French and Paul Kalas presents accessible review chapters From Disks to Planets, Dynamical Evolution of Planetary Systems, The Terrestrial Planets, Gas and Ice Giant Interiors, Atmospheres of Jovian Planets, Planetary Magnetospheres, Planetary Rings, An Overview of the Asteroids and Meteorites, Dusty Planetary Systems and Exoplanet Detection Methods. All chapters of the handbook were written by practicing professionals. They include sufficient background material and references to the current literature to allow readers to learn enough about a specialty within astronomy, astrophysics and cosmology to get started on their own practical research projects. In the spirit of the series Stars and Stellar Systems published by Chicago University Press in the 1960s and 1970s, each chapter of Planets, Stars and Stellar Systems can stand on its own as a fundamental review of its respective sub-discipline, and each volume can be used as a textbook or recommended reference work for advanced undergraduate or postgraduate courses. Advanced students and professional astronomers in their roles as both lecturers and researchers will welcome Planets, Stars and Stellar Systems as a comprehensive and pedagogical reference work on astronomy, astrophysics and cosmology.


Chemistry and Physics of Terrestrial Planets

Chemistry and Physics of Terrestrial Planets

Author: Surendra K. Saxena

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 416

ISBN-13: 1461249287

DOWNLOAD EBOOK

The purpose of this volume is to present the latest planetary studies of an international body of scientists concerned with the physical and chemical aspects of terrestrial planets. In recent years planetary science has developed in leaps and bounds. This is a result of the application of a broad range of scientific disciplines, particularly physical and chemical, to an understanding of the information received from manned and unmanned space exploration. The first five chapters expound on many of the past and recent observations in an attempt to develop meaningful physical-chemical models of planetary formation and evolution. For any discussion of the chemical processes in the solar nebula, it is important to understand the boundary conditions of the physical variables. In Chapter 1, Saf ranov and Vitjazev have laid down explicitly all the physical constraints and the problems of time-dependence of nebular evolutionary processes. Planetary scientists and students will find in this chapter a collection of astrophysical parameters on the transfer of angular momentum, formation of the disk and the gas envelope, nebular turbulence, physical mixing of particles of various origins and growth of planetesimals. The authors conclude their work with important information on ev olution of terrestrial planets. Although symbols are defined in the text of the article, readers who are not familiar with the many symbols and abbreviations in astrophysical literature will find it useful to consult the Appendix for explanations.