Templated Self Assemble of Nano-Structures

Templated Self Assemble of Nano-Structures

Author:

Publisher:

Published: 2013

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

This project will identify and model mechanisms that template the self-assembly of nanostructures. We focus on a class of systems involving a two-phase monolayer of molecules adsorbed on a solid surface. At a suitably elevated temperature, the molecules diffuse on the surface to reduce the combined free energy of mixing, phase boundary, elastic field, and electrostatic field. With no template, the phases may form a pattern of stripes or disks. The feature size is on the order of 1-100 nm, selected to compromise the phase boundary energy and the long-range elastic or electrostatic interaction. Both experimental observations and our theoretical simulations have shown that the pattern resembles a periodic lattice, but has abundant imperfections. To form a perfect periodic pattern, or a designed aperiodic pattern, one must introduce a template to guide the assembly. For example, a coarse-scale pattern, lithographically defined on the substrate, will guide the assembly of the nanoscale pattern. As another example, if the molecules on the substrate surface carry strong electric dipoles, a charged object, placed in the space above the monolayer, will guide the assembly of the molecular dipoles. In particular, the charged object can be a mask with a designed nanoscale topographic pattern. A serial process (e.g., e-beam lithography) is necessary to make the mask, but the pattern transfer to the molecules on the substrate is a parallel process. The technique is potentially a high throughput, low cost process to pattern a monolayer. The monolayer pattern itself may serve as a template to fabricate a functional structure. This project will model fundamental aspects of these processes, including thermodynamics and kinetics of self-assembly, templated self-assembly, and self-assembly on unconventional substrates. It is envisioned that the theory will not only explain the available experimental observations, but also motivate new experiments.


Chiral Nanomaterials

Chiral Nanomaterials

Author: Zhiyong Tang

Publisher: John Wiley & Sons

Published: 2018-03-05

Total Pages: 300

ISBN-13: 3527337571

DOWNLOAD EBOOK

Thorough and up-to-date, this book presents recent developments in this exciting research field. To begin with, the text covers the fabrication of chiral nanomaterials via various synthesis methods, including electron beam lithography, ion beam etching, chemical synthesis and biological DNA directed assembly. This is followed by the relevant theory and reaction mechanisms, with a discussion of the characterization of chiral nanomaterials according to the optical properties of metal nanoparticles, semiconductor nanocrystals, and nanoclusters. The whole is rounded off by a summary of applications in the field of catalysis, sensors, and biomedicine. With its comprehensive yet concise coverage of the whole spectrum of research, this is invaluable reading for senior researchers and entrants to the field of nanoscience and materials science.


Templated Self-assembly for Complex Pattern Fabrication

Templated Self-assembly for Complex Pattern Fabrication

Author: Jae-Byum Chang

Publisher:

Published: 2014

Total Pages: 157

ISBN-13:

DOWNLOAD EBOOK

The long-term goal of my Ph.D. study has been controlling the self-assembly of various materials using state-of-the-art nanofabrication techniques. Electron-beam lithography has been used for decades to generate nanoscale patterns, but its throughput is not high enough for fabricating sub-10-nm patterns over a large area. Templated block copolymer(BCP) self assembly is attractive for fabricating few-nanometer-scale structures at high throughput. On an unpattermed substrate, block copolymer self-assembly generates dense arrays of lines or dots without long-range order. Fortunately, physical features defined by electron lithography can guide the self-assembly of block copolymer. In our previous work, the orientation of cylindrical phase block copolymer was controlled simply by changing the distance between physical features, and resulting polymer patterns were analyzed by an image analysis program. Here, we first demonstrated high throughput sub-10-nm feature sizes by applying the same approach to a cylindrical morphology 16kg/mol PS-PDMS block copolymer. The half-pitch of the PDMS cylinders of this block copolymer film is 9 nm, so sub-10-nm structures can be fabricated. We also applied the similar approach to a triblock terpolymer to achieve dot patterns with square symmetry. To achieve a more complex pattern, electron-beam induced cross-linking of a block copolymer and second solvent-annealing process was used. By using this method, a line-dot hybrid pattern was achieved. Despite that the block copolymer self-assembly area had been heavily studied, researchers had yet to ascertain how to design nanostructures to achieve a desired target pattern using block copolymers. To address this problem, we developed a modular method that greatly simplifies the nanostructure design, and using this method, we achieved a circuit-like block-copolymer pattern over a large area. The key innovation is the use of a binary set of tiles that can be used to very simply cover the desired patterning area. Despite the simplicity of the approach, by exploiting neighbor-neighbor interactions of the tiles, a complex final pattern can be formed. The vision is thus one of programmability of patterning by using a simple instruction set. This development will thus be of interest to scientists and engineers across many fields involving self-assembly, including biomolecule, quantum-dot or nanowire positioning; algorithmic self-assembly; and integrated-circuit development. We applied this concept - controlling the assembly of materials using nanostructures - to a different material, protein. Single-molecule protein arrays are useful tools for studying biological phenomena at the single-molecule level, but have been developed only for a few specific proteins using the streptavidin-biotin complex as a linker. By using carefully designed gold nanopatterns and cysteine-gold interaction, we developed a process to make single-molecule protein arrays that can be used for patterning a broad range of proteins.


Materials Nanoarchitectonics

Materials Nanoarchitectonics

Author: Katsuhiko Ariga

Publisher: Elsevier

Published: 2023-12-07

Total Pages: 648

ISBN-13: 0323994733

DOWNLOAD EBOOK

Materials Nanoarchitectonics: From Integrated Molecular Systems to Advanced Devices provides the latest information on the design and molecular manipulation of self-organized hierarchically structured systems using tailor-made nanoscale materials as structural and functional units. The book is organized into three main sections that focus on molecular design of building blocks and hybrid materials, formation of nanostructures, and applications and devices. Bringing together emerging materials, synthetic aspects, nanostructure strategies, and applications, the book aims to support further progress, by offering different perspectives and a strong interdisciplinary approach to this rapidly growing area of innovation. This is an extremely valuable resource for researchers, advanced students, and scientists in industry, with an interest in nanoarchitectonics, nanostructures, and nanomaterials, or across the areas of nanotechnology, chemistry, surface science, polymer science, electrical engineering, physics, chemical engineering, and materials science. - Offers a nanoarchitectonic perspective on emerging fields, such as metal-organic frameworks, porous polymer materials, or biomimetic nanostructures - Discusses different approaches to utilizing "soft chemistry" as a source for hierarchically organized materials - Offers an interdisciplinary approach to the design and construction of integrated chemical nano systems - Discusses novel approaches towards the creation of complex multiscale architectures


Self-Assembly of Nanostructures

Self-Assembly of Nanostructures

Author: Stefano Bellucci

Publisher: Springer Science & Business Media

Published: 2011-10-27

Total Pages: 278

ISBN-13: 1461407427

DOWNLOAD EBOOK

This is the third volume in a series of books on selected topics in Nanoscale Science and Technology based on lectures given at the well-known Istituto Nazionale di Fisica Nucleare (INFN) schools of the same name. The present set of notes stems in particular from the participation and dedication of prestigious lecturers, such as Nunzio Motta, Fulvia Patella, Alexandr Toropov, and Anna Sgarlata. All lectures have been carefully edited and reworked, taking into account extensive follow-up discussions. A tutorial lecture by Motta et al. presents the analysis of the Poly(3-hexylthiophene) self assembly on carbon nanotubes and discusses how the interaction between the two materials forms a new hybrid nanostructure, with potential application to future solar cells technology. In their contribution, Patella et al. review quantum dots of III-V compounds, which offer appealing perspectives for more sophisticated applications in new generation devices such as single-photon emitters for nano-photonics and quantum computing. Focusing on self-assembled quantum dots, the chapter by Alexandr Toropov et al. provides a comprehensive review of some important aspects in the formation of quantum dots and presents the results of the authors’ extensive investigation of the features of droplet epitaxy. The fourth contribution, by Sgarlata et al., focuses on recent progress toward controlled growth of self-assembled nanostructures, dealing with the shaping, ordering and localization in Ge/Si heteroepitaxy and reviewing recent results on the self-organization of Ge nanostructures at Si surfaces.


Directed Self-assembly of Block Co-polymers for Nano-manufacturing

Directed Self-assembly of Block Co-polymers for Nano-manufacturing

Author: Roel Gronheid

Publisher: Woodhead Publishing

Published: 2015-07-17

Total Pages: 328

ISBN-13: 0081002610

DOWNLOAD EBOOK

The directed self-assembly (DSA) method of patterning for microelectronics uses polymer phase-separation to generate features of less than 20nm, with the positions of self-assembling materials externally guided into the desired pattern. Directed self-assembly of Block Co-polymers for Nano-manufacturing reviews the design, production, applications and future developments needed to facilitate the widescale adoption of this promising technology. Beginning with a solid overview of the physics and chemistry of block copolymer (BCP) materials, Part 1 covers the synthesis of new materials and new processing methods for DSA. Part 2 then goes on to outline the key modelling and characterization principles of DSA, reviewing templates and patterning using topographical and chemically modified surfaces, line edge roughness and dimensional control, x-ray scattering for characterization, and nanoscale driven assembly. Finally, Part 3 discusses application areas and related issues for DSA in nano-manufacturing, including for basic logic circuit design, the inverse DSA problem, design decomposition and the modelling and analysis of large scale, template self-assembly manufacturing techniques. - Authoritative outlining of theoretical principles and modeling techniques to give a thorough introdution to the topic - Discusses a broad range of practical applications for directed self-assembly in nano-manufacturing - Highlights the importance of this technology to both the present and future of nano-manufacturing by exploring its potential use in a range of fields


Self-Assembled Nanomaterials II

Self-Assembled Nanomaterials II

Author: Toshimi Shimizu

Publisher: Springer Science & Business Media

Published: 2008-10-28

Total Pages: 200

ISBN-13: 3540851046

DOWNLOAD EBOOK

Nanotechnology is the creation of useful materials, devices, and systems through the control of matter on the nanometer-length scale. This takes place at the scale of atoms, molecules, and supramolecular structures. In the world of chemistry, the rational design of molecular structures and optimized control of self-assembly conditions have enabled us to control the resultant self-assembled morphologies having 1 to 100-nm dimensions with sing- nanometer precision. This current research trend applying the bottom-up approach to molecules remarkably contrasts with the top-down approach in nanotechnology, in which electronic devices are miniaturizing to smaller than 30 nm. However, even engineers working with state-of-the-art computer te- nology state that maintaining the rate of improvement based on Moore’s law will be the most dif?cult challenge in the next decade. On the other hand, the excellent properties and intelligent functions of a variety of natural materials have inspired polymer and organic chemists to tailor their synthetic organic alternatives by extracting the essential structural elements. In particular, one-dimensional structures in nature with sophis- cated hierarchy, such as myelinated axons in neurons, tendon, protein tubes of tubulin, and spider webs, provide intriguing examples of integrated functions and properties. Against this background, supramolecular self-assembly of one-dimensional architectures like ?bers and tubes from amphiphilic molecules, bio-related molecules, and properly designed self-assembling polymer molecules has - tracted rapidly growing interest.


Self-Assembled Nanostructures

Self-Assembled Nanostructures

Author: Jin Zhang

Publisher: Springer Science & Business Media

Published: 2006-04-11

Total Pages: 327

ISBN-13: 0306479419

DOWNLOAD EBOOK

Nanostructures refer to materials that have relevant dimensions on the nanometer length scales and reside in the mesoscopic regime between isolated atoms and molecules in bulk matter. These materials have unique physical properties that are distinctly different from bulk materials. Self-Assembled Nanostructures provides systematic coverage of basic nanomaterials science including materials assembly and synthesis, characterization, and application. Suitable for both beginners and experts, it balances the chemistry aspects of nanomaterials with physical principles. It also highlights nanomaterial-based architectures including assembled or self-assembled systems. Filled with in-depth discussion of important applications of nano-architectures as well as potential applications ranging from physical to chemical and biological systems, Self-Assembled Nanostructures is the essential reference or text for scientists involved with nanostructures.


Templated Self-assembly of Multiferroic Nanocomposites

Templated Self-assembly of Multiferroic Nanocomposites

Author: Nicolas M. Aimon

Publisher:

Published: 2014

Total Pages: 150

ISBN-13:

DOWNLOAD EBOOK

To respond to the growing demand for smart and connected devices, such as smartphones, tablet PCs arid other mobile hardware, while meeting the needs for increased power efficiency, miniaturization and reduced manufacturing costs, new material solutions need to be considered. These should address the shortcomings of incumbent semiconductor-based technologies which provide a limited number of functionalities, suffer from high power consumption and heat dissipation, and whose conventional planar processing is increasingly complex and resource-intensive. Potential replacement materials include complex oxides, which exhibit interesting physical phenomena such as superconductivity, colossal magnetoresistance and multiferroicity. New functionalities are especially found at interfaces between two oxides, including emergent electronic states like two-dimensional electron gases, enhanced ionic transport and magnetoelectric coupling, among many other. In this this thesis, we focus on self-assembled oxide nanocomposites, which elegantly organize into vertical nanostructures via spontaneous phase-separation, naturally forming numerous such heterointerfaces. These provide a rich playground for studying interfacial effects, which could be used in future devices, and the self-assembly promises cheap arid high throughput manufacturing providing it can be integrated into useful architectures. BiFeO3-CoFe2O4 self-assembled nanocomposites, in particular, have been studied for the magnetoelectric coupling that takes place between the ferrimagnetic spinel phase, which forms discrete vertical pillars, arid the ferroelectric perovskite phase, which forms a matrix that surrounds the spinel pillars. Here, after an in-depth study of the mechanisms responsible for the formation of this self-assembled nanostructure, we develop a templating method enabling the precise control over the morphology of the film, resulting in useful structures for potential devices like magnetoelectric memories and logic devices. To study the structural, magnetic and electrical properties of our samples, a set of experimental and theoretical methods is developed, adapted to the unique requirements of these thin film nanostructures with iicron-scale ordering. Using finite element analysis and micromagnetic modeling, the effect of the strain-mediated magnetoelectic coupling on the magnetic switching of the CoFe2O4 nanopillars is predicted. Scanning Probe Microscopy is also used to characterize the local ferroelectric and magnetic behavior, and observe, for the first time in these templated composites, electrically-induced magnetic switching of the pillar magnetization. The tools and methods developed in this thesis could pave the way towards a wider use of templated self-assembly to leverage the promising properties of oxide heterointerfaces and enable their use in future devices with low manufacturing costs.