This symposium is a follow-up to one held in China in 1986. Since then considerable progress has been made in research and development of hybrid rice. This second international symposium was held under the umbrella of the International Rice Research Conference. Eighty scientists and seed production experts from 18 countries, IRRI and FAO attended. Contributions covered breeding, biotechnology, seed production, agronomy, plant physiology, plant pathology, entomology and economics.
Heterosis in rice; Rice cytoplasmic-genetic male sterility system; Procedures for breeding hybrid rice; Breeding for CMS lines and their maintainers; Breeding for restorer lines; Hybrid seed production and CMS line multiplication; Purifying parental lines and producing foundation seeds; hybrid rice cultivation practices; Breeding two-line system hybrid rice; Studies on one-line system hybrid rice development.
Heterosis breeding and hybrid rice; Male sterility systems in rice; Organization of hybrid rice breeding program using CMS system; Source nursery; CMS maintenance and evaluation nursery; Testcross nursery; Restorer purification nursery; Backcross nursery; Combining ability nursery; Breeding rice hybrids with TGMS system; Nucleus and breeder seed production of A, B, R, and TGMS lines; Seed production of experimental rice hybrids; Evaluation of experimental rice hybrids; Improvement of parental lines; Methods of enhancing the levels of heterosis; Quality assurance procedures in hybrid rice breeding.
Heterosis and Hybrid Seed Production in Agronomic Crops discusses how heterosis or “hybrid vigor” has played a major role in improving crop productivity and quality in order to feed the ever-increasing human population, particularly in developing countries. Plant breeders, agronomists, seed producers, and farmers will discover why the development of hybrids in the world's major food crops and why the methods of hybrid seed production are critical for achieving this goal. This landmark book deals with heterosis and hybrid seed production of major agronomic crops such as wheat, rice, maize, sorghum, cotton, sunflower, and rapeseed. Through Heterosis and Hybrid Seed Production in Agronomic Crops, you will discover valuable information on hybrid seed production methods that is not available in any other single volume. This unique book contains relevant and essential information about important procedures to help increase crop yield, including: methods for deriving second cycle inbred lines for hybrid maize possibilities for hybrid seed production in wheat techniques of hybrid sorghum seed production production of hybrid seeds using male sterile lines of cotton agronomic management in seed production plots of sunflower seed production technology of hybrid rapeseed advances in hybrid seed production technology of rice in China Heterosis and Hybrid Seed Production in Agronomic Crops gives you a global perspective on essential food crops in all parts of the world. This informative guide will help you use hybrid seed production methods with important agricultural crops and increase the quality of these vital and essential food sources.
This book is open access under a CC BY 4.0 license. By 2050, human population is expected to reach 9.7 billion. The demand for increased food production needs to be met from ever reducing resources of land, water and other environmental constraints. Rice remains the staple food source for a majority of the global populations, but especially in Asia where ninety percent of rice is grown and consumed. Climate change continues to impose abiotic and biotic stresses that curtail rice quality and yields. Researchers have been challenged to provide innovative solutions to maintain, or even increase, rice production. Amongst them, the ‘green super rice’ breeding strategy has been successful for leading the development and release of multiple abiotic and biotic stress tolerant rice varieties. Recent advances in plant molecular biology and biotechnologies have led to the identification of stress responsive genes and signaling pathways, which open up new paradigms to augment rice productivity. Accordingly, transcription factors, protein kinases and enzymes for generating protective metabolites and proteins all contribute to an intricate network of events that guard and maintain cellular integrity. In addition, various quantitative trait loci associated with elevated stress tolerance have been cloned, resulting in the detection of novel genes for biotic and abiotic stress resistance. Mechanistic understanding of the genetic basis of traits, such as N and P use, is allowing rice researchers to engineer nutrient-efficient rice varieties, which would result in higher yields with lower inputs. Likewise, the research in micronutrients biosynthesis opens doors to genetic engineering of metabolic pathways to enhance micronutrients production. With third generation sequencing techniques on the horizon, exciting progress can be expected to vastly improve molecular markers for gene-trait associations forecast with increasing accuracy. This book emphasizes on the areas of rice science that attempt to overcome the foremost limitations in rice production. Our intention is to highlight research advances in the fields of physiology, molecular breeding and genetics, with a special focus on increasing productivity, improving biotic and abiotic stress tolerance and nutritional quality of rice.
In 1968, the director of USAID coined the term “green revolution” to celebrate the new technological solutions that promised to ease hunger around the world—and forestall the spread of more “red,” or socialist, revolutions. Yet in China, where modernization and scientific progress could not be divorced from politics, green and red revolutions proceeded side by side. In Red Revolution, Green Revolution, Sigrid Schmalzer explores the intersection of politics and agriculture in socialist China through the diverse experiences of scientists, peasants, state agents, and “educated youth.” The environmental costs of chemical-intensive agriculture and the human costs of emphasizing increasing production over equitable distribution of food and labor have been felt as strongly in China as anywhere—and yet, as Schmalzer shows, Mao-era challenges to technocracy laid important groundwork for today’s sustainability and food justice movements. This history of “scientific farming” in China offers us a unique opportunity not only to explore the consequences of modern agricultural technologies but also to engage in a necessary rethinking of fundamental assumptions about science and society.