Intelligent systems enhance the capacities made available by the internet and other computer-based technologies. This book is devoted to various aspects of the management of intelligent systems. Particular attention is paid to situations in which the available information and data may be imprecise, uncertain, incomplete or of linguistic nature. Various methods developed to manage such information are discussed in the context of several domains of application. Topics included in the book include preference modelling and decision making, learning, clustering and data mining, information retrieval. The paradigm of computing with words is also addressed.
Intelligent systems enhance the capacities made available by the internet and other computer-based technologies. This book deals with the theory behind the solutions to difficult problems in the construction of intelligent systems. Particular attention is paid to situations in which the available information and data may be imprecise, uncertain, incomplete or of linguistic nature. Various methodologies for these cases are discussed, among which are probabilistic, possibilistic, fuzzy, logical, evidential and network-based frameworks. One purpose of the book is to consider how these methods can be used cooperatively. Topics included in the book include fundamental issues in uncertainty, the rapidly emerging discipline of information aggregation, neural networks, bayesian networks and other network methods, as well as logic-based systems.
Produce a fully functioning Intelligent System that leverages machine learning and data from user interactions to improve over time and achieve success. This book teaches you how to build an Intelligent System from end to end and leverage machine learning in practice. You will understand how to apply your existing skills in software engineering, data science, machine learning, management, and program management to produce working systems. Building Intelligent Systems is based on more than a decade of experience building Internet-scale Intelligent Systems that have hundreds of millions of user interactions per day in some of the largest and most important software systems in the world. What You’ll Learn Understand the concept of an Intelligent System: What it is good for, when you need one, and how to set it up for success Design an intelligent user experience: Produce data to help make the Intelligent System better over time Implement an Intelligent System: Execute, manage, and measure Intelligent Systems in practice Create intelligence: Use different approaches, including machine learning Orchestrate an Intelligent System: Bring the parts together throughout its life cycle and achieve the impact you want Who This Book Is For Software engineers, machine learning practitioners, and technical managers who want to build effective intelligent systems
The third edition of this bestseller examines the principles of artificial intelligence and their application to engineering and science, as well as techniques for developing intelligent systems to solve practical problems. Covering the full spectrum of intelligent systems techniques, it incorporates knowledge-based systems, computational intelligence, and their hybrids. Using clear and concise language, Intelligent Systems for Engineers and Scientists, Third Edition features updates and improvements throughout all chapters. It includes expanded and separated chapters on genetic algorithms and single-candidate optimization techniques, while the chapter on neural networks now covers spiking networks and a range of recurrent networks. The book also provides extended coverage of fuzzy logic, including type-2 and fuzzy control systems. Example programs using rules and uncertainty are presented in an industry-standard format, so that you can run them yourself. The first part of the book describes key techniques of artificial intelligence—including rule-based systems, Bayesian updating, certainty theory, fuzzy logic (types 1 and 2), frames, objects, agents, symbolic learning, case-based reasoning, genetic algorithms, optimization algorithms, neural networks, hybrids, and the Lisp and Prolog languages. The second part describes a wide range of practical applications in interpretation and diagnosis, design and selection, planning, and control. The author provides sufficient detail to help you develop your own intelligent systems for real applications. Whether you are building intelligent systems or you simply want to know more about them, this book provides you with detailed and up-to-date guidance. Check out the significantly expanded set of free web-based resources that support the book at: http://www.adrianhopgood.com/aitoolkit/
Gathering the Proceedings of the 2018 Intelligent Systems Conference (IntelliSys 2018), this book offers a remarkable collection of chapters covering a wide range of topics in intelligent systems and computing, and their real-world applications. The Conference attracted a total of 568 submissions from pioneering researchers, scientists, industrial engineers, and students from all around the world. These submissions underwent a double-blind peer review process, after which 194 (including 13 poster papers) were selected to be included in these proceedings. As intelligent systems continue to replace and sometimes outperform human intelligence in decision-making processes, they have made it possible to tackle many problems more effectively. This branching out of computational intelligence in several directions, and the use of intelligent systems in everyday applications, have created the need for such an international conference, which serves as a venue for reporting on cutting-edge innovations and developments. This book collects both theory and application-based chapters on all aspects of artificial intelligence, from classical to intelligent scope. Readers are sure to find the book both interesting and valuable, as it presents state-of-the-art intelligent methods and techniques for solving real-world problems, along with a vision of future research directions.
Dedicated to the consideration of advanced I.T. technologies and their financial applications, this volume contains contributions from an international group of system developers and managers from academia, the financial industry and their suppliers: all actively involved in the development and practical introduction of these technologies into banking and financial organisations.Concentrating on real experience and present needs, rather than theoretical possibilities or limited prototype applications, it is hoped the publication will give a better insight into advanced I.T. practice and potential as it currently exists and motivate today's developers and researchers.In addition to the discussion of a wide range of technologies and approaches to ensure adaptivity, three other major topics are explored in the book: neural networks, classical software engineering techniques and rule-based systems.
The 21st century has witnessed massive changes around the world in intelligence systems in order to become smarter, energy efficient, reliable, and cheaper. This volume explores the application of intelligent techniques in various fields of engineering and technology. It addresses diverse topics in such areas as machine learning-based intelligent systems for healthcare, applications of artificial intelligence and the Internet of Things, intelligent data analytics techniques, intelligent network systems and applications, and inequalities and process control systems. The authors explore the full breadth of the field, which encompasses data analysis, image processing, speech processing and recognition, medical science and healthcare monitoring, smart irrigation systems, insurance and banking, robotics and process control, and more.
Intelligent Decision Technologies (IDT) seeks an interchange of research on intelligent systems and intelligent technologies which enhance or improve decision making in industry, government and academia. The focus is interdisciplinary in nature, and includes research on all aspects of intelligent decision technologies, from fundamental development to the applied system. This volume represents leading research from the Third KES International Symposium on Intelligent Decision Technologies (KES IDT’11), hosted and organized by the University of Piraeus, Greece, in conjunction with KES International. The symposium was concerned with theory, design, development, implementation, testing and evaluation of intelligent decision systems. Topics include decision making theory, intelligent agents, fuzzy logic, multi-agent systems, Bayesian networks, optimization, artificial neural networks, genetic algorithms, expert systems, decision support systems, geographic information systems, case-based reasoning, time series, knowledge management systems, rough sets, spatial decision analysis, and multi-criteria decision analysis. These technologies have the potential to revolutionize decision making in many areas of management, healthcare, international business, finance, accounting, marketing, military applications, ecommerce, network management, crisis response, building design, information retrieval, and disaster recovery for a better future. The symposium was concerned with theory, design, development, implementation, testing and evaluation of intelligent decision systems. Topics include decision making theory, intelligent agents, fuzzy logic, multi-agent systems, Bayesian networks, optimization, artificial neural networks, genetic algorithms, expert systems, decision support systems, geographic information systems, case-based reasoning, time series, knowledge management systems, rough sets, spatial decision analysis, and multi-criteria decision analysis. These technologies have the potential to revolutionize decision making in many areas of management, healthcare, international business, finance, accounting, marketing, military applications, ecommerce, network management, crisis response, building design, information retrieval, and disaster recovery for a better future.
This six-volume set presents cutting-edge advances and applications of expert systems. Because expert systems combine the expertise of engineers, computer scientists, and computer programmers, each group will benefit from buying this important reference work. An "expert system" is a knowledge-based computer system that emulates the decision-making ability of a human expert. The primary role of the expert system is to perform appropriate functions under the close supervision of the human, whose work is supported by that expert system. In the reverse, this same expert system can monitor and double check the human in the performance of a task. Human-computer interaction in our highly complex world requires the development of a wide array of expert systems. Expert systems techniques and applications are presented for a diverse array of topics including Experimental design and decision support The integration of machine learning with knowledge acquisition for the design of expert systems Process planning in design and manufacturing systems and process control applications Knowledge discovery in large-scale knowledge bases Robotic systems Geograhphic information systems Image analysis, recognition and interpretation Cellular automata methods for pattern recognition Real-time fault tolerant control systems CAD-based vision systems in pattern matching processes Financial systems Agricultural applications Medical diagnosis
This book includes a selection of articles from The 2019 World Conference on Information Systems and Technologies (WorldCIST’19), held from April 16 to 19, at La Toja, Spain. WorldCIST is a global forum for researchers and practitioners to present and discuss recent results and innovations, current trends, professional experiences and challenges in modern information systems and technologies research, together with their technological development and applications. The book covers a number of topics, including A) Information and Knowledge Management; B) Organizational Models and Information Systems; C) Software and Systems Modeling; D) Software Systems, Architectures, Applications and Tools; E) Multimedia Systems and Applications; F) Computer Networks, Mobility and Pervasive Systems; G) Intelligent and Decision Support Systems; H) Big Data Analytics and Applications; I) Human–Computer Interaction; J) Ethics, Computers & Security; K) Health Informatics; L) Information Technologies in Education; M) Information Technologies in Radiocommunications; and N) Technologies for Biomedical Applications.