Technical Approach to Probabilistic Safety Assessment for Multiple Reactor Units

Technical Approach to Probabilistic Safety Assessment for Multiple Reactor Units

Author: International Atomic Energy Agency

Publisher: International Atomic Energy Agency

Published: 2019-07-23

Total Pages: 171

ISBN-13: 9789201026187

DOWNLOAD EBOOK

The technical approach described in this publication builds on the use of a single unit probabilistic safety assessment (PSA) and identifies considerations that are needed from the multi-unit perspective. This is the first attempt to expand the current PSA process to take account of multi-unit issues, and has been done by distilling lessons learned from the Fukushima Daiichi accident and other multi-unit events, and by reviewing previous PSAs and supporting research that have addressed the risks of multi-unit accidents. The publication provides a roadmap and methodology for performing a multi-unit PSA, proposes a set of site level risk metrics, and presents examples of approaches to resolve specific issues.


Development and Application of Level 2 Probabilistic Safety Assessment for Nuclear Power Plants

Development and Application of Level 2 Probabilistic Safety Assessment for Nuclear Power Plants

Author: International Atomic Energy Agency

Publisher:

Published: 2010

Total Pages: 0

ISBN-13: 9789201022103

DOWNLOAD EBOOK

The objective of this Safety Guide is to provide recommendations for meeting the IAEA safety requirements in performing or managing a level 2 probabilistic safety assessment (PSA) project for a nuclear power plant; thus it complements the Safety Guide on level 1 PSA. One of the aims of this Safety Guide is to promote a standard framework, standard terms and a standard set of documents for level 2 PSAs to facilitate regulatory and external peer review of their results. It describes all elements of the level 2 PSA that need to be carried out if the starting point is a fully comprehensive level 1 PSA. Contents: 1. Introduction; 2. PSA project management and organization; 3. Identification of design aspects important to severe accidents and acquisition of information; 4. Interface with level 1 PSA: Grouping of sequences; 5. Accident progression and containment analysis; 6. Source terms for severe accidents; 7. Documentation of the analysis: Presentation and interpretation of results; 8. Use and applications of the PSA; References; Annex I: Example of a typical schedule for a level 2 PSA; Annex II: Computer codes for simulation of severe accidents; Annex III: Sample outline of documentation for a level 2 PSA study.


Multi-unit Probabilistic Safety Assessment

Multi-unit Probabilistic Safety Assessment

Author: IAEA

Publisher: International Atomic Energy Agency

Published: 2023-10-19

Total Pages: 252

ISBN-13: 9201194226

DOWNLOAD EBOOK

The accident at the Fukushima Daiichi Nuclear Power Plant underlined the need to assess the nuclear safety of multi-unit sites considering the accident sequences involving more than one reactor units on site. The objective of this Safety Report is to provide a methodology for the development of a Multi-unit Probabilistic Safety Assessment (MUPSA). It provides practical examples and an overview of the actual state of practice in this area. The publication provides a detailed description of Level 1 MUPSA methodology, the principles of development of Level 2 MUPSA models and the path forward for multi-unit consequence analysis (Level 3 MUPSA). In addition, it summarizes the experience available in Member States in the area of MUPSA. The scope of this Safety Report includes consideration of various hazards and plant operational states normally considered in PSA development in the multi-unit context.


Safety of Nuclear Power Plants

Safety of Nuclear Power Plants

Author: International Atomic Energy Agency

Publisher:

Published: 2012

Total Pages: 0

ISBN-13: 9789201215109

DOWNLOAD EBOOK

On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.


Reliability, Safety and Hazard Assessment for Risk-Based Technologies

Reliability, Safety and Hazard Assessment for Risk-Based Technologies

Author: Prabhakar V. Varde

Publisher: Springer Nature

Published: 2019-08-30

Total Pages: 988

ISBN-13: 9811390088

DOWNLOAD EBOOK

This volume presents selected papers from the International Conference on Reliability, Safety, and Hazard. It presents the latest developments in reliability engineering and probabilistic safety assessment, and brings together contributions from a diverse international community and covers all aspects of safety, reliability, and hazard assessment across a host of interdisciplinary applications. This book will be of interest to researchers in both academia and the industry.


Lessons Learned from the Fukushima Nuclear Accident for Improving Safety of U.S. Nuclear Plants

Lessons Learned from the Fukushima Nuclear Accident for Improving Safety of U.S. Nuclear Plants

Author: National Research Council (U.S.). Committee on Lessons Learned from the Fukushima Nuclear Accident for Improving Safety and Security of U.S. Nuclear Plants

Publisher: National Academy Press

Published: 2014-10-29

Total Pages: 394

ISBN-13: 9780309272537

DOWNLOAD EBOOK

The March 11, 2011, Great East Japan Earthquake and tsunami sparked a humanitarian disaster in northeastern Japan. They were responsible for more than 15,900 deaths and 2,600 missing persons as well as physical infrastructure damages exceeding $200 billion. The earthquake and tsunami also initiated a severe nuclear accident at the Fukushima Daiichi Nuclear Power Station. Three of the six reactors at the plant sustained severe core damage and released hydrogen and radioactive materials. Explosion of the released hydrogen damaged three reactor buildings and impeded onsite emergency response efforts. The accident prompted widespread evacuations of local populations, large economic losses, and the eventual shutdown of all nuclear power plants in Japan. "Lessons Learned from the Fukushima Nuclear Accident for Improving Safety and Security of U.S. Nuclear Plants" is a study of the Fukushima Daiichi accident. This report examines the causes of the crisis, the performance of safety systems at the plant, and the responses of its operators following the earthquake and tsunami. The report then considers the lessons that can be learned and their implications for U.S. safety and storage of spent nuclear fuel and high-level waste, commercial nuclear reactor safety and security regulations, and design improvements. "Lessons Learned" makes recommendations to improve plant systems, resources, and operator training to enable effective ad hoc responses to severe accidents. This report's recommendations to incorporate modern risk concepts into safety regulations and improve the nuclear safety culture will help the industry prepare for events that could challenge the design of plant structures and lead to a loss of critical safety functions. In providing a broad-scope, high-level examination of the accident, "Lessons Learned" is meant to complement earlier evaluations by industry and regulators. This in-depth review will be an essential resource for the nuclear power industry, policy makers, and anyone interested in the state of U.S. preparedness and response in the face of crisis situations.


Probabilistic Risk Analysis

Probabilistic Risk Analysis

Author: Tim Bedford

Publisher: Cambridge University Press

Published: 2001-04-30

Total Pages: 228

ISBN-13: 9780521773201

DOWNLOAD EBOOK

Probabilistic risk analysis aims to quantify the risk caused by high technology installations. Increasingly, such analyses are being applied to a wider class of systems in which problems such as lack of data, complexity of the systems, uncertainty about consequences, make a classical statistical analysis difficult or impossible. The authors discuss the fundamental notion of uncertainty, its relationship with probability, and the limits to the quantification of uncertainty. Drawing on extensive experience in the theory and applications of risk analysis, the authors focus on the conceptual and mathematical foundations underlying the quantification, interpretation and management of risk. They cover standard topics as well as important new subjects such as the use of expert judgement and uncertainty propagation. The relationship of risk analysis with decision making is highlighted in chapters on influence diagrams and decision theory. Finally, the difficulties of choosing metrics to quantify risk, and current regulatory frameworks are discussed.


Probabilistic Safety Assessment for Seismic Events

Probabilistic Safety Assessment for Seismic Events

Author: International Atomic Energy Agency

Publisher:

Published: 2021-02-28

Total Pages: 0

ISBN-13: 9789201314208

DOWNLOAD EBOOK

Probabilistic safety assessment (PSA) is considered to be an important tool for assessing the safety of nuclear installations (typically used for safety assessment of nuclear power plants) in relation to potential initiating events that can be caused by random component failure and human error, as well as internal and external hazards. The purpose of seismic PSAs performed on nuclear installations is to provide risk insights related to their seismic robustness. The methodology for seismic safety evaluations includes a combination of deterministic and probabilistic approaches. Their applications typically address the impact of beyond design basis seismic events. This publication provides a detailed methodology for seismic PSA in line with the current international practices for seismic safety assessment of nuclear installations. Taking into account recommendations provided in IAEA safety standards and information reflected in internationally recognized technical standards, it reflects the current state of practice in the area of seismic PSA.


Human Reliability Analysis in Probabilistic Safety Assessment for Nuclear Power Plants

Human Reliability Analysis in Probabilistic Safety Assessment for Nuclear Power Plants

Author: International Atomic Energy Agency

Publisher:

Published: 1995

Total Pages: 116

ISBN-13:

DOWNLOAD EBOOK

Presents a practical approach for incorporating human reliability analysis (HRA) into probabilistic safety assessment (PSA). This document describes the steps needed and the documentation that should be provided both to support the PSA itself and to ensure effective communication of important information arising from the studies.


Safety Assessment for Spent Fuel Storage Facilities

Safety Assessment for Spent Fuel Storage Facilities

Author: International Atomic Energy Agency

Publisher:

Published: 1994

Total Pages: 88

ISBN-13:

DOWNLOAD EBOOK

Describes international approaches for maintaining fuel subcritical, removing residual heat, providing radiation protection and containing radioactive materials for the lifetime of a facility. It is intended to provide details on the safety assessment of interim spent fuel storage facilities that are not an integral part of an operating plant.