This book provides teachers with a series of carefully developed 5-E inquiry lesson models. The lessons are standards-based and organized to provide a sequential development of physical, life, and earth/ space science concepts appropriate to use directly with students in K-8 classrooms. Each lesson series focuses on one element of science teaching. Learning how to teach science is thus embedded in the context of authentic learning cycle lessons.
Through content area reading, hands-on experiences, and inquiry investigations, young scientists learn the essential concepts of science. The language is clear, simple, and scientifically correct. The imaginative and effective lessons cover life, earth, and physical sciences. Helpful extras include science inquiry worksheets, an inquiry assessment rubric, and alignment to standards.
Engaging Students in Science Investigation Using GRC: Science Instruction Consistent with the Framework and NGSS Teachers can create a learning environment that piques student curiosity and engages learners in science investigations to make sense of phenomena. The Gather, Reason, Communicate Reasoning (GRC) method provides an effective instructional sequence consistent with the research on how students learn science. This book provides teachers of science with specific guidance and examples for how to improve science teaching and learning consistent with the vision for science education presented in the Framework, NGSS, and three-dimensional state standards.
Humans, especially children, are naturally curious. Yet, people often balk at the thought of learning scienceâ€"the "eyes glazed over" syndrome. Teachers may find teaching science a major challenge in an era when science ranges from the hardly imaginable quark to the distant, blazing quasar. Inquiry and the National Science Education Standards is the book that educators have been waiting forâ€"a practical guide to teaching inquiry and teaching through inquiry, as recommended by the National Science Education Standards. This will be an important resource for educators who must help school boards, parents, and teachers understand "why we can't teach the way we used to." "Inquiry" refers to the diverse ways in which scientists study the natural world and in which students grasp science knowledge and the methods by which that knowledge is produced. This book explains and illustrates how inquiry helps students learn science content, master how to do science, and understand the nature of science. This book explores the dimensions of teaching and learning science as inquiry for K-12 students across a range of science topics. Detailed examples help clarify when teachers should use the inquiry-based approach and how much structure, guidance, and coaching they should provide. The book dispels myths that may have discouraged educators from the inquiry-based approach and illuminates the subtle interplay between concepts, processes, and science as it is experienced in the classroom. Inquiry and the National Science Education Standards shows how to bring the standards to life, with features such as classroom vignettes exploring different kinds of inquiries for elementary, middle, and high school and Frequently Asked Questions for teachers, responding to common concerns such as obtaining teaching supplies. Turning to assessment, the committee discusses why assessment is important, looks at existing schemes and formats, and addresses how to involve students in assessing their own learning achievements. In addition, this book discusses administrative assistance, communication with parents, appropriate teacher evaluation, and other avenues to promoting and supporting this new teaching paradigm.
Science Lessons & Investigations presents science learning through in-depth investigation and observation, supporting Next Generation Science Standards (NGSS). Each unit guides students through exploring a science concept and includes hands-on activities to extend learning. This robust teaching resource gives you everything you need, including teacher support pages, informational text and graphics, vocabulary review, reading and writing activities, and hands-on science projects. Students apply science, technology, engineering, and math concepts to solve real-world problems. Each of the 15 units focuses on a hands-on challenge in which students work together as engineers to designs, prototype, test, and refine their creations. Topics support NGSS. Book jacket.
Science Lessons & Investigations presents science learning through in-depth investigation and observation, supporting Next Generation Science Standards (NGSS). Each unit guides students through exploring a science concept and includes hands-on activities to extend learning. This robust teaching resource gives you everything you need, including teacher support pages, informational text and graphics, vocabulary review, reading and writing activities, and hands-on science projects. Students apply science, technology, engineering, and math concepts to solve real-world problems. Each of the 15 units focuses on a hands-on challenge in which students work together as engineers to design, prototype, test, and refine their creations. Topics support NGSS. Book jacket.
Science Lessons & Investigations presents science learning through in-depth investigation and observation, supporting Next Generation Science Standards (NGSS). Each unit guides students through exploring a science concept and includes hands-on activities to extend teaming. This robust teaching resource gives you everything you need, including teacher support pages, informational text and graphics, vocabulary review, reading and writing activities, and hands-on science projects. Students apply science, technology, engineering, and math concepts to solve real-world problems. Each of the 15 units focuses on a hands-on challenge in which students work together as engineers to design, prototype, test, and refine their creations. Topics support NGSS. Book jacket.
What is science for a child? How do children learn about science and how to do science? Drawing on a vast array of work from neuroscience to classroom observation, Taking Science to School provides a comprehensive picture of what we know about teaching and learning science from kindergarten through eighth grade. By looking at a broad range of questions, this book provides a basic foundation for guiding science teaching and supporting students in their learning. Taking Science to School answers such questions as: When do children begin to learn about science? Are there critical stages in a child's development of such scientific concepts as mass or animate objects? What role does nonschool learning play in children's knowledge of science? How can science education capitalize on children's natural curiosity? What are the best tasks for books, lectures, and hands-on learning? How can teachers be taught to teach science? The book also provides a detailed examination of how we know what we know about children's learning of scienceâ€"about the role of research and evidence. This book will be an essential resource for everyone involved in K-8 science educationâ€"teachers, principals, boards of education, teacher education providers and accreditors, education researchers, federal education agencies, and state and federal policy makers. It will also be a useful guide for parents and others interested in how children learn.
This book enables teachers to develop a complete range of basic investigations for science with students aged five to 11 years. It demonstrates how children can use hands-on activities to consolidate and extend their knowledge and understanding. Investigations are presented in a generic form, so that teachers can work through them and adapt them to meet the particular needs of their own classes. The presentation of activities ranges from highly-structured sequences of instructions and questions (with answers!), to more general discussions, depending on the approach needed and the likely variations in equipment and materials available. Each activity is aimed to help any teacher carry out significant scientific investigations with their class, and where necessary, to learn alongside them. - Almost every investigation and activity has been tested by the author. - Investigations use readily-available, non-specialist or recycled materials. The context of this book is children′s need to learn through first-hand experience of the world around them. This book is an essential resource for teachers planning an effective science programme, or for student teachers needing to broaden their scientific knowledge and understanding. 200 Science Investigations for Young Students is the companion volume of activities which demonstrate the theories in Martin Wenham′s Understanding Primary Science. The content has been guided by, but not limited to, The National Curriculum 2000 and the Initial Teacher Training Curriculum for Primary Science, issued by the Teacher Training Agency.
Science Lessons & Investigations presents science learning through in-depth investigation and observation, supporting Next Generation Science Standards (NGSS). Each unit guides students through exploring a science concept and includes hands-on activities to extend learning. This robust teaching resource gives you everything you need, including teacher support pages, informational text and graphics, vocabulary review, reading and writing activities, and hands-on science projects. Students apply science, technology, engineering, and math concepts to solve real-world problems. Each of the 15 units focuses on a hands-on challenge in which students work together as engineers to design, prototype, test, and refine their creations. Topics support NGSS. Book jacket.