Taylor Approximations for Stochastic Partial Differential Equations

Taylor Approximations for Stochastic Partial Differential Equations

Author: Arnulf Jentzen

Publisher: SIAM

Published: 2011-01-01

Total Pages: 234

ISBN-13: 9781611972016

DOWNLOAD EBOOK

This book presents a systematic theory of Taylor expansions of evolutionary-type stochastic partial differential equations (SPDEs). The authors show how Taylor expansions can be used to derive higher order numerical methods for SPDEs, with a focus on pathwise and strong convergence. In the case of multiplicative noise, the driving noise process is assumed to be a cylindrical Wiener process, while in the case of additive noise the SPDE is assumed to be driven by an arbitrary stochastic process with Hl̲der continuous sample paths. Recent developments on numerical methods for random and stochastic ordinary differential equations are also included since these are relevant for solving spatially discretised SPDEs as well as of interest in their own right. The authors include the proof of an existence and uniqueness theorem under general assumptions on the coefficients as well as regularity estimates in an appendix.


Numerical Solution of Stochastic Differential Equations

Numerical Solution of Stochastic Differential Equations

Author: Peter E. Kloeden

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 666

ISBN-13: 3662126168

DOWNLOAD EBOOK

The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP


Applied Stochastic Differential Equations

Applied Stochastic Differential Equations

Author: Simo Särkkä

Publisher: Cambridge University Press

Published: 2019-05-02

Total Pages: 327

ISBN-13: 1316510085

DOWNLOAD EBOOK

With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.


Effective Dynamics of Stochastic Partial Differential Equations

Effective Dynamics of Stochastic Partial Differential Equations

Author: Jinqiao Duan

Publisher: Elsevier

Published: 2014-03-06

Total Pages: 283

ISBN-13: 0128012692

DOWNLOAD EBOOK

Effective Dynamics of Stochastic Partial Differential Equations focuses on stochastic partial differential equations with slow and fast time scales, or large and small spatial scales. The authors have developed basic techniques, such as averaging, slow manifolds, and homogenization, to extract effective dynamics from these stochastic partial differential equations. The authors' experience both as researchers and teachers enable them to convert current research on extracting effective dynamics of stochastic partial differential equations into concise and comprehensive chapters. The book helps readers by providing an accessible introduction to probability tools in Hilbert space and basics of stochastic partial differential equations. Each chapter also includes exercises and problems to enhance comprehension. - New techniques for extracting effective dynamics of infinite dimensional dynamical systems under uncertainty - Accessible introduction to probability tools in Hilbert space and basics of stochastic partial differential equations - Solutions or hints to all Exercises


An Introduction to Computational Stochastic PDEs

An Introduction to Computational Stochastic PDEs

Author: Gabriel J. Lord

Publisher: Cambridge University Press

Published: 2014-08-11

Total Pages: 516

ISBN-13: 0521899907

DOWNLOAD EBOOK

This book offers a practical presentation of stochastic partial differential equations arising in physical applications and their numerical approximation.


Numerical Approximations of Stochastic Differential Equations with Non-Globally Lipschitz Continuous Coefficients

Numerical Approximations of Stochastic Differential Equations with Non-Globally Lipschitz Continuous Coefficients

Author: Martin Hutzenthaler

Publisher: American Mathematical Soc.

Published: 2015-06-26

Total Pages: 112

ISBN-13: 1470409844

DOWNLOAD EBOOK

Many stochastic differential equations (SDEs) in the literature have a superlinearly growing nonlinearity in their drift or diffusion coefficient. Unfortunately, moments of the computationally efficient Euler-Maruyama approximation method diverge for these SDEs in finite time. This article develops a general theory based on rare events for studying integrability properties such as moment bounds for discrete-time stochastic processes. Using this approach, the authors establish moment bounds for fully and partially drift-implicit Euler methods and for a class of new explicit approximation methods which require only a few more arithmetical operations than the Euler-Maruyama method. These moment bounds are then used to prove strong convergence of the proposed schemes. Finally, the authors illustrate their results for several SDEs from finance, physics, biology and chemistry.


Strong and Weak Approximation of Semilinear Stochastic Evolution Equations

Strong and Weak Approximation of Semilinear Stochastic Evolution Equations

Author: Raphael Kruse

Publisher: Springer

Published: 2013-11-18

Total Pages: 188

ISBN-13: 3319022318

DOWNLOAD EBOOK

In this book we analyze the error caused by numerical schemes for the approximation of semilinear stochastic evolution equations (SEEq) in a Hilbert space-valued setting. The numerical schemes considered combine Galerkin finite element methods with Euler-type temporal approximations. Starting from a precise analysis of the spatio-temporal regularity of the mild solution to the SEEq, we derive and prove optimal error estimates of the strong error of convergence in the first part of the book. The second part deals with a new approach to the so-called weak error of convergence, which measures the distance between the law of the numerical solution and the law of the exact solution. This approach is based on Bismut’s integration by parts formula and the Malliavin calculus for infinite dimensional stochastic processes. These techniques are developed and explained in a separate chapter, before the weak convergence is proven for linear SEEq.


Stochastic Partial Differential Equations

Stochastic Partial Differential Equations

Author: Sergey V. Lototsky

Publisher: Springer

Published: 2017-07-06

Total Pages: 517

ISBN-13: 3319586475

DOWNLOAD EBOOK

Taking readers with a basic knowledge of probability and real analysis to the frontiers of a very active research discipline, this textbook provides all the necessary background from functional analysis and the theory of PDEs. It covers the main types of equations (elliptic, hyperbolic and parabolic) and discusses different types of random forcing. The objective is to give the reader the necessary tools to understand the proofs of existing theorems about SPDEs (from other sources) and perhaps even to formulate and prove a few new ones. Most of the material could be covered in about 40 hours of lectures, as long as not too much time is spent on the general discussion of stochastic analysis in infinite dimensions. As the subject of SPDEs is currently making the transition from the research level to that of a graduate or even undergraduate course, the book attempts to present enough exercise material to fill potential exams and homework assignments. Exercises appear throughout and are usually directly connected to the material discussed at a particular place in the text. The questions usually ask to verify something, so that the reader already knows the answer and, if pressed for time, can move on. Accordingly, no solutions are provided, but there are often hints on how to proceed. The book will be of interest to everybody working in the area of stochastic analysis, from beginning graduate students to experts in the field.


Numerical Approximations of Stochastic Maxwell Equations

Numerical Approximations of Stochastic Maxwell Equations

Author: Chuchu Chen

Publisher: Springer Nature

Published: 2024-01-04

Total Pages: 293

ISBN-13: 9819966868

DOWNLOAD EBOOK

The stochastic Maxwell equations play an essential role in many fields, including fluctuational electrodynamics, statistical radiophysics, integrated circuits, and stochastic inverse problems. This book provides some recent advances in the investigation of numerical approximations of the stochastic Maxwell equations via structure-preserving algorithms. It presents an accessible overview of the construction and analysis of structure-preserving algorithms with an emphasis on the preservation of geometric structures, physical properties, and asymptotic behaviors of the stochastic Maxwell equations. A friendly introduction to the simulation of the stochastic Maxwell equations with some structure-preserving algorithms is provided using MATLAB for the reader’s convenience. The objects considered in this book are related to several fascinating mathematical fields: numerical analysis, stochastic analysis, (multi-)symplectic geometry, large deviations principle, ergodic theory, partial differential equation, probability theory, etc. This book will appeal to researchers who are interested in these topics.


A Minicourse on Stochastic Partial Differential Equations

A Minicourse on Stochastic Partial Differential Equations

Author: Robert C. Dalang

Publisher: Springer Science & Business Media

Published: 2009

Total Pages: 230

ISBN-13: 3540859934

DOWNLOAD EBOOK

This title contains lectures that offer an introduction to modern topics in stochastic partial differential equations and bring together experts whose research is centered on the interface between Gaussian analysis, stochastic analysis, and stochastic PDEs.