Task Intelligence for Search and Recommendation

Task Intelligence for Search and Recommendation

Author: Chirag Shah

Publisher: Springer Nature

Published: 2022-06-01

Total Pages: 140

ISBN-13: 3031023269

DOWNLOAD EBOOK

While great strides have been made in the field of search and recommendation, there are still challenges and opportunities to address information access issues that involve solving tasks and accomplishing goals for a wide variety of users. Specifically, we lack intelligent systems that can detect not only the request an individual is making (what), but also understand and utilize the intention (why) and strategies (how) while providing information and enabling task completion. Many scholars in the fields of information retrieval, recommender systems, productivity (especially in task management and time management), and artificial intelligence have recognized the importance of extracting and understanding people's tasks and the intentions behind performing those tasks in order to serve them better. However, we are still struggling to support them in task completion, e.g., in search and assistance, and it has been challenging to move beyond single-query or single-turn interactions. The proliferation of intelligent agents has unlocked new modalities for interacting with information, but these agents will need to be able to work understanding current and future contexts and assist users at task level. This book will focus on task intelligence in the context of search and recommendation. Chapter 1 introduces readers to the issues of detecting, understanding, and using task and task-related information in an information episode (with or without active searching). This is followed by presenting several prominent ideas and frameworks about how tasks are conceptualized and represented in Chapter 2. In Chapter 3, the narrative moves to showing how task type relates to user behaviors and search intentions. A task can be explicitly expressed in some cases, such as in a to-do application, but often it is unexpressed. Chapter 4 covers these two scenarios with several related works and case studies. Chapter 5 shows how task knowledge and task models can contribute to addressing emerging retrieval and recommendation problems. Chapter 6 covers evaluation methodologies and metrics for task-based systems, with relevant case studies to demonstrate their uses. Finally, the book concludes in Chapter 7, with ideas for future directions in this important research area.


Task Intelligence for Search and Recommendation

Task Intelligence for Search and Recommendation

Author: Chirag Shah

Publisher: Morgan & Claypool Publishers

Published: 2021-06-10

Total Pages: 162

ISBN-13: 1636391508

DOWNLOAD EBOOK

While great strides have been made in the field of search and recommendation, there are still challenges and opportunities to address information access issues that involve solving tasks and accomplishing goals for a wide variety of users. Specifically, we lack intelligent systems that can detect not only the request an individual is making (what), but also understand and utilize the intention (why) and strategies (how) while providing information and enabling task completion. Many scholars in the fields of information retrieval, recommender systems, productivity (especially in task management and time management), and artificial intelligence have recognized the importance of extracting and understanding people's tasks and the intentions behind performing those tasks in order to serve them better. However, we are still struggling to support them in task completion, e.g., in search and assistance, and it has been challenging to move beyond single-query or single-turn interactions. The proliferation of intelligent agents has unlocked new modalities for interacting with information, but these agents will need to be able to work understanding current and future contexts and assist users at task level. This book will focus on task intelligence in the context of search and recommendation. Chapter 1 introduces readers to the issues of detecting, understanding, and using task and task-related information in an information episode (with or without active searching). This is followed by presenting several prominent ideas and frameworks about how tasks are conceptualized and represented in Chapter 2. In Chapter 3, the narrative moves to showing how task type relates to user behaviors and search intentions. A task can be explicitly expressed in some cases, such as in a to-do application, but often it is unexpressed. Chapter 4 covers these two scenarios with several related works and case studies. Chapter 5 shows how task knowledge and task models can contribute to addressing emerging retrieval and recommendation problems. Chapter 6 covers evaluation methodologies and metrics for task-based systems, with relevant case studies to demonstrate their uses. Finally, the book concludes in Chapter 7, with ideas for future directions in this important research area.


Robotics and Rehabilitation Intelligence

Robotics and Rehabilitation Intelligence

Author: Jianhua Qian

Publisher: Springer Nature

Published: 2020-12-18

Total Pages: 432

ISBN-13: 9813349328

DOWNLOAD EBOOK

This 2-volume set constitutes the refereed proceedings of 1st International Conference on Robotics and Rehabilitation Intelligence, ICRRI 2020, held in Fushun, China, in September 2020. The 56 full and 4 short papers were carefully reviewed and selected from 188 submissions. The papers are divided into the following topical sections. In the first volume: Rehabilitation robotics and safety; machine vision application; electric drive and power system fault diagnosis; robust stability and stabilization; intelligent method application; intelligent control and perception; smart remanufacturing and industrial intelligence; and intelligent control of integrated energy system. In the second volume: smart healthcare and intelligent information processing; human-robot interaction; multi-robot systems and control; robot design and control; robotic vision and machine intelligence; optimization method in monitoring; advanced process control in petrochemical process; and rehabilitation intelligence.


Interactions with Search Systems

Interactions with Search Systems

Author: Ryen W. White

Publisher: Cambridge University Press

Published: 2016-03-14

Total Pages: 527

ISBN-13: 1107034221

DOWNLOAD EBOOK

This book describes advances in technology, data availability, and searcher expectations around next-generation search engines.


2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT)

2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT)

Author: IEEE Staff

Publisher:

Published: 2022-01-20

Total Pages:

ISBN-13: 9781665401197

DOWNLOAD EBOOK

The 4th International Conference on Smart Systems and Inventive Technology (ICSSIT 2022) is being organized by Francis Xavier Engineering College, Tirunelveli, India during 20 22, January 2022 ICSSIT 2022 will provide an outstanding international forum for sharing knowledge and results in all fields of science, engineering and Technology ICSSIT provides quality key experts who provide an opportunity in bringing up innovative ideas Recent updates in the field of technology will be a platform for the upcoming researchers The conference will be Complete, Concise, Clear and Cohesive in terms of research related to Smart Systems and Technology


Recommender Systems Handbook

Recommender Systems Handbook

Author: Francesco Ricci

Publisher: Springer

Published: 2015-11-17

Total Pages: 1008

ISBN-13: 148997637X

DOWNLOAD EBOOK

This second edition of a well-received text, with 20 new chapters, presents a coherent and unified repository of recommender systems’ major concepts, theories, methodologies, trends, and challenges. A variety of real-world applications and detailed case studies are included. In addition to wholesale revision of the existing chapters, this edition includes new topics including: decision making and recommender systems, reciprocal recommender systems, recommender systems in social networks, mobile recommender systems, explanations for recommender systems, music recommender systems, cross-domain recommendations, privacy in recommender systems, and semantic-based recommender systems. This multi-disciplinary handbook involves world-wide experts from diverse fields such as artificial intelligence, human-computer interaction, information retrieval, data mining, mathematics, statistics, adaptive user interfaces, decision support systems, psychology, marketing, and consumer behavior. Theoreticians and practitioners from these fields will find this reference to be an invaluable source of ideas, methods and techniques for developing more efficient, cost-effective and accurate recommender systems.


Artificial Intelligence in Healthcare

Artificial Intelligence in Healthcare

Author: Adam Bohr

Publisher: Academic Press

Published: 2020-06-21

Total Pages: 385

ISBN-13: 0128184396

DOWNLOAD EBOOK

Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data


Recommender System with Machine Learning and Artificial Intelligence

Recommender System with Machine Learning and Artificial Intelligence

Author: Sachi Nandan Mohanty

Publisher: John Wiley & Sons

Published: 2020-07-08

Total Pages: 448

ISBN-13: 1119711576

DOWNLOAD EBOOK

This book is a multi-disciplinary effort that involves world-wide experts from diverse fields, such as artificial intelligence, human computer interaction, information technology, data mining, statistics, adaptive user interfaces, decision support systems, marketing, and consumer behavior. It comprehensively covers the topic of recommender systems, which provide personalized recommendations of items or services to the new users based on their past behavior. Recommender system methods have been adapted to diverse applications including social networking, movie recommendation, query log mining, news recommendations, and computational advertising. This book synthesizes both fundamental and advanced topics of a research area that has now reached maturity. Recommendations in agricultural or healthcare domains and contexts, the context of a recommendation can be viewed as important side information that affects the recommendation goals. Different types of context such as temporal data, spatial data, social data, tagging data, and trustworthiness are explored. This book illustrates how this technology can support the user in decision-making, planning and purchasing processes in agricultural & healthcare sectors.


Exploratory Search

Exploratory Search

Author: Ryen White

Publisher: Morgan & Claypool Publishers

Published: 2013-08-01

Total Pages: 108

ISBN-13: 1598297848

DOWNLOAD EBOOK

As information becomes more ubiquitous and the demands that searchers have on search systems grow, there is a need to support search behaviors beyond simple lookup. Information seeking is the process or activity of attempting to obtain information in both human and technological contexts. Exploratory search describes an information-seeking problem context that is open-ended, persistent, and multifaceted, and information-seeking processes that are opportunistic, iterative, and multitactical. Exploratory searchers aim to solve complex problems and develop enhanced mental capacities. Exploratory search systems support this through symbiotic human-machine relationships that provide guidance in exploring unfamiliar information landscapes. Exploratory search has gained prominence in recent years. There is an increased interest from the information retrieval, information science, and human-computer interaction communities in moving beyond the traditional turn-taking interaction model supported by major Web search engines, and toward support for human intelligence amplification and information use. In this lecture, we introduce exploratory search, relate it to relevant extant research, outline the features of exploratory search systems, discuss the evaluation of these systems, and suggest some future directions for supporting exploratory search. Exploratory search is a new frontier in the search domain and is becoming increasingly important in shaping our future world. Table of Contents: Introduction / Defining Exploratory Search / Related Work / Features of Exploratory Search Systems / Evaluation of Exploratory Search Systems / Future Directions and concluding Remarks