Structure and Bonding in crystals

Structure and Bonding in crystals

Author: Michael O'Keeffe

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 346

ISBN-13: 0323141471

DOWNLOAD EBOOK

Structure and Bonding in Crystals presents a new understanding of the older topics such as bond length, bond strength, and ionic radii. These concepts have been used by geochemists and geophysicists to systematize and predict phase transitions at high pressure. The final group of chapters deals with the problems of classifying complex solids and with systematic descriptions of the relationships between their structures. This book comprises 13 chapters, with the first presenting a historical perspective by Linus Pauling. The following chapters then go on to discuss quantum theory and crystal chemistry; pseudopotentials and crystal structure; quantum-defect orbital radii and the structural chemistry of simple solids; and a pseudopotential viewpoint of the electronic and structural properties of crystals. Other chapters cover elementary quantitative theory of chemical bonding; the role and significance of empirical and semiempirical correlations; theoretical probes of bonding in the disiloxy group; a comparison of experimental and theoretical bond length and angle variations; the role of nonbonded forces in crystals; molecules within infinite solids; charge density distributions; and some aspects of the ionic model of crystals. This book will be of interest to practitioners in the fields of chemistry, physics, and geology.


Elements of Structures and Defects of Crystalline Materials

Elements of Structures and Defects of Crystalline Materials

Author: Tsang-Tse Fang

Publisher: Elsevier

Published: 2018-01-25

Total Pages: 233

ISBN-13: 0128142693

DOWNLOAD EBOOK

Elements of Structures and Defects of Crystalline Materials has been written to cover not only the fundamental principles behind structures and defects, but also to provide deep insights into understanding the relationships of properties, defect chemistry and processing of the concerned materials. Part One deals with structures, while Part Two covers defects. Since the knowledge of the electron configuration of elements is necessary for understanding the nature of chemical bonding, it is discussed in the opening chapter. Chapter Two then describes the bonding formation within the crystal structures of varied materials, with Chapter Three delving into how a material's structure is formed. In view of the importance of the effects of the structure distortion on the material properties due to the fields, the related topics have been included in section 3.4. Moreover, several materials still under intensive investigation have been illustrated to provide deep insights into understanding the effects of the relationships of processing, structures and defects on the material properties. The defects of materials are explored in Part II. Chapter 4 deals with the point defects of metal and ceramics. Chapter 5 covers the fundamentals of the characteristics of dislocations, wherein physics and the atomic mechanics of several issues have been described in detail. In view of the significant influence of the morphologies including size, shape and distribution of grains, phases on the microstructure evolution, and, in turn, the properties of materials, the final chapter focuses on the fundamentals of interface energies, including single phase (grain) boundary and interphase boundary. - Discusses the relationship between properties, defect chemistry and the processing of materials - Presents coverage of the fundamental principles behind structures and defects - Includes information on two-dimensional and three-dimensional imperfections in solids


Materials Crystal Chemistry

Materials Crystal Chemistry

Author: Relva C. Buchanan

Publisher: CRC Press

Published: 1997-05-20

Total Pages: 478

ISBN-13: 9780824797980

DOWNLOAD EBOOK

"Furnishes a thorough presentation of crystal structure development in metals, ceramics, and polymers commonly used in materials science and engineering. Provides a unique synthesis of bonding, symmetry, and crystallographic concepts. Emphasizes the relationship between developed structures and physical properties."


Crystallography and Crystal Chemistry of Materials with Layered Structures

Crystallography and Crystal Chemistry of Materials with Layered Structures

Author: Francis Lévy

Publisher: Springer

Published: 1976-04-30

Total Pages: 378

ISBN-13: 9789027705860

DOWNLOAD EBOOK

In the last ten years, the chemistry and physics of materials with layered structures became an intensively investigated field in the study of the solid state. Research into physical properties of these crystals and especially investigations of their physical anisotropy related to the structural anisotropy has led to remarkable and perplexing results. Most of the layered materials exist in several polytypic modifications and can include stacking faults. The crystal structures are therefore complex and it became apparent that there was a great need for a review of the crystallographic data of materials approximating two-dimensional solids. This second volume in the series 'Physics and Chemistry of Materials with Layered Structures' has been written by specialists of different classes of layered materials. Structural data are reviewed and the most important relations between the structure and the chemical and physical properties are emphasized. The first three contributions are devoted to the transition metal dichalcogenides whose physical properties have been investigated in detail. The crystallographic data and crystal growth conditions are presented in the first paper. The second paper constitutes an incisive review of the phase transformations and charge density waves which have been observed in the metallic dichalcogenides. In two contributions the layered structures of newer ternary compounds are de scribed and the connection between structure and non-stoichiometry is discussed.


Intermetallics

Intermetallics

Author: Walter Steurer

Publisher: Oxford University Press

Published: 2016

Total Pages: 583

ISBN-13: 0198714556

DOWNLOAD EBOOK

The fascinating world of intermetallics is largely unexplored. There are many exciting physical properties and important technological applications of intermetallics, from magnetism to superconductivity. The main focus of this book is on the statistics, topology and geometry of crystal structures and structure types of intermetallic phases. The underlying physics, in particular chemical bonding, is discussed whenever it helps understand the stability of structures and the origin of their physical properties. The authors' approach, based on the statistical analysis of more than twenty thousand intermetallic compounds in the data base Pearson's Crystal Data, uncovers important structural relationships and illustrates the relative simplicity of most of the general structural building principles. It also shows that a large variety of actual structures can be related to a rather small number of aristotypes. The text aims to be readable and beneficial in one way or another to everyone interested in intermetallic phases, from graduate students to experts in solid state chemistry and physics, and materials science. For that purpose it avoids the use of enigmatic abstract terminology for the classification of structures. Instead, it focuses on the statistical analysis of crystal structures and structure types in order to draw together a larger overview of intermetallics, and indicate the gaps in it - areas still to be explored, and potential sources of worthwhile research. The text should be read as a reference guide to the incredibly rich world of intermetallic phases.


Structure and Bonding in crystals

Structure and Bonding in crystals

Author: Alexandra Nsvrotsky

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 376

ISBN-13: 0323153437

DOWNLOAD EBOOK

Structure and Bonding in Crystals, Volume II discusses the factors determining crystal structure. This book examines the principles of structure and bonding in complex solids. Divided into 13 parts, this volume begins with an overview of the development of atomic pseudopotentials and the discovery that they could be applied directly to atoms in crystals. This book then provides an understanding of other relevant topics, including ionic radii, bond strength, and bond length. Other chapters focus on the problems of classifying complex solids and describe the relationship between their structures. This text also describes the alloy structure to help know how compounds react or transform. This book further explores the geometrical relationships between different structure types in crystals. The final chapter deals with the contribution of Mooser and Pearson in the study of energy-band theory and chemical bonding. Solid-state physicists and chemists, geophysicists, metallurgists, and ceramists will find this book extremely useful.


Engineering of Crystalline Materials Properties

Engineering of Crystalline Materials Properties

Author: Juan J. Novoa

Publisher: Springer Science & Business Media

Published: 2007-12-14

Total Pages: 520

ISBN-13: 1402068239

DOWNLOAD EBOOK

This volume collects the state of the art in molecular materials. It collects the lecture notes of a series of lectures given by some of the best specialists in the field at the 2007 Erice International School of Crystallography, and also a NATO-ASI course. The school first established "where we are" in terms of modeling, design, synthesis and applications of crystalline solids with predefined properties and then defined current and possible futuristic lines of development.


Preparation and Crystal Growth of Materials with Layered Structures

Preparation and Crystal Growth of Materials with Layered Structures

Author: R.M.A. Lieth

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 285

ISBN-13: 9401727503

DOWNLOAD EBOOK

The goal of the series Physics and Chemistry of Materials with Layered Structures is to give a critical survey of our present knowledge on a large family of materials which can be described as solids containing molecules which in two dimensions extend to infinity and which are loosely stacked on top of each other to form three dimensional crystals. Of course, the physics and chemistry of these crystals are specific chapters in ordinary solid state science, and many a scientist hunting for new phenomena has in the past been disappointed to find that materials with layered structures are not entirely exotic. Their electron and phonon states are not two dimensional, and the high hopes held by some for spectacular dimensionality effects in superconductivity were shattered. Nevertheless, the structural features and their physical and chemical consequences singularize layered structures sufficiently to make them a fascinating subject of research. This is all the more true since they are met in insulators and semiconductors as well as in normal and superconducting metals. Although for the time being the series is intentionally limited to cover inorganic materials only, the many known organic layered structures may well be the subject of future volumes. Among the noteworthy peculiarities of layered structures, we mention specific growth mechanisms and crystal habits. Polytypism is very common and it is fasci nating indeed to find up to 240 different polytypes in the same chemical substance.


Crystal Structures

Crystal Structures

Author: M Ladd

Publisher: Horwood Publishing

Published: 1999-06

Total Pages: 198

ISBN-13: 9781898563631

DOWNLOAD EBOOK

This book presents and discusses those common crystal structures that would be encountered by students taking chemistry, or any subject within which chemistry forms a significant component. With many worked examples and a wide selection of problems with solutions. Includes instructions for making simple stereoviewers and computer programs, in a thorough treatment of binary alloys and three-dimensional packing in molecular solids.


Fundamentals Of Quantum Materials: A Practical Guide To Synthesis And Exploration

Fundamentals Of Quantum Materials: A Practical Guide To Synthesis And Exploration

Author: Johnpierre Paglione

Publisher: World Scientific

Published: 2021-01-04

Total Pages: 276

ISBN-13: 9811219389

DOWNLOAD EBOOK

Despite a long tradition of sophisticated, creative materials synthesis among quantum materials researchers, a sense of broader community has been lacking. In initiating the Fundamentals of Quantum Materials Winter School held annually at the University of Maryland, we wanted to bring together the next generation of growers to learn techniques and pointers directly from senior scientists, and it turns out that we were not alone. The enthusiasm from both students and teachers has been both gratifying and invigorating. Four schools later, we can confidently say that physicists, chemists, and materials scientists, experimentalists and theorists alike, all want to know how to make a good sample. With this in mind, we asked our lecturers to record their most important ideas and share their expertise with a broader audience. This resource is a compilation of fundamental and practical guides on the modern methods of materials synthesis utilized by these experts. We hope that you enjoy reading their essential guidance and state-of-the-art techniques as you explore the Fundamentals of Quantum Materials.