Table of Integrals, Series, and Products

Table of Integrals, Series, and Products

Author: I. S. Gradshteyn

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 1207

ISBN-13: 1483265641

DOWNLOAD EBOOK

Table of Integrals, Series, and Products provides information pertinent to the fundamental aspects of integrals, series, and products. This book provides a comprehensive table of integrals. Organized into 17 chapters, this book begins with an overview of elementary functions and discusses the power of binomials, the exponential function, the logarithm, the hyperbolic function, and the inverse trigonometric function. This text then presents some basic results on vector operators and coordinate systems that are likely to be useful during the formulation of many problems. Other chapters consider inequalities that range from basic algebraic and functional inequalities to integral inequalities and fundamental oscillation and comparison theorems for ordinary differential equations. This book discusses as well the important part played by integral transforms. The final chapter deals with Fourier and Laplace transforms that provides so much information about other integrals. This book is a valuable resource for mathematicians, engineers, scientists, and research workers.


Handbook of Mathematical Formulas and Integrals

Handbook of Mathematical Formulas and Integrals

Author: Alan Jeffrey

Publisher:

Published: 2000

Total Pages: 472

ISBN-13:

DOWNLOAD EBOOK

If there is a formula to solve a given problem in mathematics, it can be found in Alan Jeffrey's Handbook of Mathematical Formulas and Integrals. Thanks to its unique thumb-tab indexing feature, answers are easy to find based upon the type of problem they solve. The handbook covers important formulas, functions, relations, and methods from algebra, trigonomic and exponential functions, combinatorics, probability, matrix theory, calculus and vector calculus, both ordinary and partial differential equations, Fourier series, orthogonal polynomials, and Laplace transforms. Equations are computer-validated with Scientific WorkPlace and Mathematica. -- Back cover


Handbook of Differential Equations

Handbook of Differential Equations

Author: Daniel Zwillinger

Publisher: Academic Press

Published: 2014-05-12

Total Pages: 694

ISBN-13: 1483220966

DOWNLOAD EBOOK

Handbook of Differential Equations is a handy reference to many popular techniques for solving and approximating differential equations, including exact analytical methods, approximate analytical methods, and numerical methods. Topics covered range from transformations and constant coefficient linear equations to finite and infinite intervals, along with conformal mappings and the perturbation method. Comprised of 180 chapters, this book begins with an introduction to transformations as well as general ideas about differential equations and how they are solved, together with the techniques needed to determine if a partial differential equation is well-posed or what the "natural" boundary conditions are. Subsequent sections focus on exact and approximate analytical solution techniques for differential equations, along with numerical methods for ordinary and partial differential equations. This monograph is intended for students taking courses in differential equations at either the undergraduate or graduate level, and should also be useful for practicing engineers or scientists who solve differential equations on an occasional basis.


(Almost) Impossible Integrals, Sums, and Series

(Almost) Impossible Integrals, Sums, and Series

Author: Cornel Ioan Vălean

Publisher: Springer

Published: 2019-05-10

Total Pages: 572

ISBN-13: 3030024628

DOWNLOAD EBOOK

This book contains a multitude of challenging problems and solutions that are not commonly found in classical textbooks. One goal of the book is to present these fascinating mathematical problems in a new and engaging way and illustrate the connections between integrals, sums, and series, many of which involve zeta functions, harmonic series, polylogarithms, and various other special functions and constants. Throughout the book, the reader will find both classical and new problems, with numerous original problems and solutions coming from the personal research of the author. Where classical problems are concerned, such as those given in Olympiads or proposed by famous mathematicians like Ramanujan, the author has come up with new, surprising or unconventional ways of obtaining the desired results. The book begins with a lively foreword by renowned author Paul Nahin and is accessible to those with a good knowledge of calculus from undergraduate students to researchers, and will appeal to all mathematical puzzlers who love a good integral or series.


Limits, Series, and Fractional Part Integrals

Limits, Series, and Fractional Part Integrals

Author: Ovidiu Furdui

Publisher: Springer Science & Business Media

Published: 2013-05-30

Total Pages: 289

ISBN-13: 1461467624

DOWNLOAD EBOOK

This book features challenging problems of classical analysis that invite the reader to explore a host of strategies and tools used for solving problems of modern topics in real analysis. This volume offers an unusual collection of problems — many of them original — specializing in three topics of mathematical analysis: limits, series, and fractional part integrals. The work is divided into three parts, each containing a chapter dealing with a particular problem type as well as a very short section of hints to select problems. The first chapter collects problems on limits of special sequences and Riemann integrals; the second chapter focuses on the calculation of fractional part integrals with a special section called ‘Quickies’ which contains problems that have had unexpected succinct solutions. The final chapter offers the reader an assortment of problems with a flavor towards the computational aspects of infinite series and special products, many of which are new to the literature. Each chapter contains a section of difficult problems which are motivated by other problems in the book. These ‘Open Problems’ may be considered research projects for students who are studying advanced calculus, and which are intended to stimulate creativity and the discovery of new and original methods for proving known results and establishing new ones. This stimulating collection of problems is intended for undergraduate students with a strong background in analysis; graduate students in mathematics, physics, and engineering; researchers; and anyone who works on topics at the crossroad between pure and applied mathematics. Moreover, the level of problems is appropriate for students involved in the Putnam competition and other high level mathematical contests.


CRC Standard Mathematical Tables and Formulae, 32nd Edition

CRC Standard Mathematical Tables and Formulae, 32nd Edition

Author: Daniel Zwillinger

Publisher: CRC Press

Published: 2011-06-22

Total Pages: 792

ISBN-13: 1439835500

DOWNLOAD EBOOK

With over 6,000 entries, CRC Standard Mathematical Tables and Formulae, 32nd Edition continues to provide essential formulas, tables, figures, and descriptions, including many diagrams, group tables, and integrals not available online. This new edition incorporates important topics that are unfamiliar to some readers, such as visual proofs and sequences, and illustrates how mathematical information is interpreted. Material is presented in a multisectional format, with each section containing a valuable collection of fundamental tabular and expository reference material. New to the 32nd Edition A new chapter on Mathematical Formulae from the Sciences that contains the most important formulae from a variety of fields, including acoustics, astrophysics, epidemiology, finance, statistical mechanics, and thermodynamics New material on contingency tables, estimators, process capability, runs test, and sample sizes New material on cellular automata, knot theory, music, quaternions, and rational trigonometry Updated and more streamlined tables Retaining the successful format of previous editions, this comprehensive handbook remains an invaluable reference for professionals and students in mathematical and scientific fields.


Inside Interesting Integrals

Inside Interesting Integrals

Author: Paul J. Nahin

Publisher: Springer Nature

Published: 2020-06-27

Total Pages: 542

ISBN-13: 3030437884

DOWNLOAD EBOOK

What’s the point of calculating definite integrals since you can’t possibly do them all? What makes doing the specific integrals in this book of value aren’t the specific answers we’ll obtain, but rather the methods we’ll use in obtaining those answers; methods you can use for evaluating the integrals you will encounter in the future. This book, now in its second edition, is written in a light-hearted manner for students who have completed the first year of college or high school AP calculus and have just a bit of exposure to the concept of a differential equation. Every result is fully derived. If you are fascinated by definite integrals, then this is a book for you. New material in the second edition includes 25 new challenge problems and solutions, 25 new worked examples, simplified derivations, and additional historical discussion.


Numerical Linear Algebra

Numerical Linear Algebra

Author: Lloyd N. Trefethen

Publisher: SIAM

Published: 2022-06-17

Total Pages: 387

ISBN-13: 1611977169

DOWNLOAD EBOOK

Since its original appearance in 1997, Numerical Linear Algebra has been a leading textbook in its field, used in universities around the world. It is noted for its 40 lecture-sized short chapters and its clear and inviting style. It is reissued here with a new foreword by James Nagy and a new afterword by Yuji Nakatsukasa about subsequent developments.