On the solution of an optimal search problem with an exponential detection function. Covers one- and two-sided detection problems by furnishing continuous and discret time strategies; examines two-sided search strategies with solutions in hide and seek games in many discrete and continuous bounded
This monograph covers one of the divisions of mathematical theory of control which examines moving objects functionating under conflict and uncertainty conditions. To identify this range of problems we use the term "conflict con trolled processes", coined in recent years. As the name itself does not imply the type of dynamics (difference, ordinary differential, difference-differential, integral, or partial differential equations) the differential games falI within its realms. The problems of search and tracking moving objects are also referred to the field of conflict controlled process. The contents of the monograph is confined to studying classical pursuit-evasion problems which are central to the theory of conflict controlled processes. These problems underlie the theory and are of considerable interest to researchers up to now. It should be noted that the methods of "Line of Sight", "Parallel Pursuit", "Proportional N avigation" ,"Modified Pursuit" and others have been long and well known among engineers engaged in design of rocket and space technology. An abstract theory of dynamic game problems, in its turn, is based on the methods originated by R. Isaacs, L. S. Pontryagin, and N. N. Krasovskii, and on the approaches developed around these methods. At the heart of the book is the Method of Resolving Functions which was realized within the class of quasistrategies for pursuers and then applied to the solution of the problems of "hand-to-hand", group, and succesive pursuit.
Vladimir Petrovich Potapov, as remembered by colleagues, friends and former students.- On a minimum problem in function theory and the number of roots of an algebraic equation inside the unit disc.- On tangential interpolation in reproducing kernel Hilbert modules and applications.- Notes on a Nevanlinna-Pick interpolation problem for generalized Nevanlinna functions.- The indefinite metric in the Schur interpolation problem for analytic functions, IV.- Bitangential interpolation for upper triangular operators.- Bitangential interpolation for upper triangular operators when the Pick operator is strictly positive.- Integral representations of a pair of nonnegative operators and interpolation problems in the Stieltjes class.- On recovering a multiplicative integral from its modulus.- On Schur functions and Szegö orthogonal polynomials.- Hilbert spaces of entire functions as a J theory subject.- On transformations of Potapov's fundamental matrix inequality.- An abstract interpolation problem and the extension theory of isometric operators.- On the theory of matrix-valued functions belonging to the Smirnov class.- Integral representation of function of class Ka.- On the theory of entire matrix-functions of exponential type.- Analogs of Nehari and Sarason theorems for character-automorphic functions and some related questions.- The Blaschke-Potapov factorization theorem and the theory of nonselfadjoint operators.- Weyl matrix circles as a tool for uniqueness in the theory of multiplicative representation of J-inner functions.- On a criterion of positive definiteness.- Matrix boundary value problems with eigenvalue dependent boundary conditions (The linear case).- Weyl-Titchmarsh functions of the canonical periodical system of differential equations.- On boundary values of functions regular in a disk.
The 4th volume of this comprehensive work features hundreds of serial killers from Sacramento to Soviet Russia—plus numerous unsolved cases. The World Encyclopedia of Serial Killers is the most complete reference guide on the subject, featuring more than 1,600 entries about the lives and crimes of serial killers from around the world. Defined by the FBI as a person who murders three or more people with a hiatus of weeks or months between murders, the serial killer has presented unique and terrifying challenges to have walked among us since the dawn of time—a fact this extensive record makes chillingly clear. The series concludes with Volume Four, T-Z. Entries include the Terminator Anatoly Yuriyovych Onoprienko; Trailside Killer David Joseph Carpenter; Vampire of Sacramento Richard Trenton Chase; and the Voroshilovgrad Maniac Zaven Almazyan; plus the unsolved cases of the Adelaide Child Murders; the Axeman of New Orleans; the Chillicothe Killer; the Dead Women of Juarez; the Korea Frog Boy Murders; and the Volga Maniac.
This book offers readers a taste of the "unreasonable effectiveness" of Morse theory. It covers many of the most important topics in Morse theory along with applications. The book details topics such as Morse-Smale flows, min-max theory, moment maps and equivariant cohomology, and complex Morse theory. In addition, many examples, problems, and illustrations further enhance the value of this useful introduction to Morse Theory.
Introduction to Qualitative Computing; Hypercomputation in Dickson Algebras; Scales of Complexity and Linear Reachability; Singular Values for the Multiplication Maps; Computation Beyond Classical Logic; Complexification of the Arithmetic; Homotopic Deviation in Linear Algebra; The Discrete and the Continuous; Arithmetic in the Alternative Dickson Division Algebras; The Real and the Complex.
In this paper, we proposed the notion of single valued neutrosophic hesitant fuzzy rough set, by combining single valued neutrosophic hesitant fuzzy set and rough set. The combination of single valued neutrosophic hesitant fuzzy set and rough set is a powerful tool for dealing with uncertainty, granularity and incompleteness of knowledge in information systems. We presented both definition and some basic properties of the proposed model. Finally, we gave a general approach which is applied to a decision making problem in disease diagnoses, and demonstrated the effectiveness of the approach by a numerical example.
On April 29, 1814 Napoleon landed on the island of Elba, surrounded with a personal army of 1200 men. The allies, Russia, Prussia, England and Austria, hadforcedhimintoexileafteranumberofverycostlydefeats;hewasdeprived ofallhistitles, butcouldkeepthetitleof"EmperorofElba". Historytellsusthat each morning he took long walks in the sun, reviewed his army each midday anddiscussedworldmatterswithnewlyappointedadvisors, followingthesame pattern everyday, to the great surprise of Campbell, the British of?cer who was to keep an eye on him. All this made everyone believe he was settled there for good. Napoleononcesaid:Elbaisbeautiful, butabitsmall. Elbawasde?nitely a source of inspiration; indeed, the early morning, March 6, 1815, Metternich, the chancellor of Austria was woken up by one of his aides with the stunning news that Napoleon had left Elba with his 1200 men and was marching to Paris with little resistance; A few days later he took up his throne again in the Tuileries. In spite of his insatiable hunger for battles and expansion, he is remembered as an important statesman. He was a pioneer in setting up much of the legal, administrative and political machinery in large parts of continental Europe. We gathered here in a lovely and quaint?shing port, Marciana Marina on theislandofElba, tocelebrateoneofthepioneersofintegrablesystems, Hirota Sensei, andthisattheoccasionofhisseventiethbirthday. Trainedasaphysicist in his home university Kyushu University, Professor Hirota earned his PhD in '61 at Northwestern University with Professor Siegert in the?eld of "Quantum Statistical mechanics". He wrote a widely appreciated Doctoral dissertation on "FunctionalIntegralrepresentationofthegrandpartitionfunction."
Quantum statistical mechanics plays a major role in many fields such as thermodynamics, plasma physics, solid-state physics, and the study of stellar structure. While the theory of quantum harmonic oscillators is relatively simple, the case of anharmonic oscillators, a mathematical model of a localized quantum particle, is more complex and challenging. Moreover, infinite systems of interacting quantum anharmonic oscillators possess interesting ordering properties with respect to quantum stabilization. This book presents a rigorous approach to the statistical mechanics of such systems, in particular with respect to their actions on a crystal lattice. The text is addressed to both mathematicians and physicists, especially those who are concerned with the rigorous mathematical background of their results and the kind of problems that arise in quantum statistical mechanics. The reader will find here a concise collection of facts, concepts, and tools relevant for the application of path integrals and other methods based on measure and integration theory to problems of quantum physics, in particular the latest results in the mathematical theory of quantum anharmonic crystals. The methods developed in the book are also applicable to other problems involving infinitely many variables, for example, in biology and economics.