Systems Optimization Methodology

Systems Optimization Methodology

Author: V. V. Kolbin

Publisher: World Scientific

Published: 1998

Total Pages: 460

ISBN-13: 9789810215897

DOWNLOAD EBOOK

This monograph defines the notion of a ?system? by reference to those systems which exhibit goal-oriented behavior and utilize the notion of decision making and controls. Such systems allow for phenomenological description and fix the nature of causal transformations of input effects into output quantities. The study of consequences of the fact that the systems possess some properties constitutes the content of systems optimization methodology which goes beyond the scope of descriptive classification of systems.Chapter 1 deals with philosophical problems of systems methodology. An attempt is made to systematize and analyze the problems of scientific methodology as applied to systems modeling methodology which is viewed as the most general concept utilized in modern science.Chapter 2 focuses on problems of qualitative analysis in natural and social sciences. Attention is drawn to problems of measurement theory and quantitative analysis of systems.Approaches and methods of systems analysis and synthesis form the central portion of the book. Much study is given to the methods of systems decomposition, an integration using both discrete and continuous descriptions of objects, processes, and phenomena. Examples of complex goal-oriented systems are also provided.The remaining part of the book is largely centered around the methodology of multiobjective systems optimization.


Thermal System Optimization

Thermal System Optimization

Author: Vivek K. Patel

Publisher: Springer

Published: 2019-02-14

Total Pages: 488

ISBN-13: 303010477X

DOWNLOAD EBOOK

This book presents a wide-ranging review of the latest research and development directions in thermal systems optimization using population-based metaheuristic methods. It helps readers to identify the best methods for their own systems, providing details of mathematical models and algorithms suitable for implementation. To reduce mathematical complexity, the authors focus on optimization of individual components rather than taking on systems as a whole. They employ numerous case studies: heat exchangers; cooling towers; power generators; refrigeration systems; and others. The importance of these subsystems to real-world situations from internal combustion to air-conditioning is made clear. The thermal systems under discussion are analysed using various metaheuristic techniques, with comparative results for different systems. The inclusion of detailed MATLAB® codes in the text will assist readers—researchers, practitioners or students—to assess these techniques for different real-world systems. Thermal System Optimization is a useful tool for thermal design researchers and engineers in academia and industry, wishing to perform thermal system identification with properly optimized parameters. It will be of interest for researchers, practitioners and graduate students with backgrounds in mechanical, chemical and power engineering.


Advanced Optimization for Process Systems Engineering

Advanced Optimization for Process Systems Engineering

Author: Ignacio E. Grossmann

Publisher: Cambridge University Press

Published: 2021-03-25

Total Pages: 205

ISBN-13: 1108831656

DOWNLOAD EBOOK

A unique text covering basic and advanced concepts of optimization theory and methods for process systems engineers. With examples illustrating key concepts and algorithms, and exercises involving theoretical derivations, numerical problems and modeling systems, it is ideal for single-semester, graduate courses in process systems engineering.


Modern Optimization Techniques with Applications in Electric Power Systems

Modern Optimization Techniques with Applications in Electric Power Systems

Author: Soliman Abdel-Hady Soliman

Publisher: Springer Science & Business Media

Published: 2011-12-15

Total Pages: 430

ISBN-13: 146141752X

DOWNLOAD EBOOK

This book presents the application of some AI related optimization techniques in the operation and control of electric power systems. With practical applications and examples the use of functional analysis, simulated annealing, Tabu-search, Genetic algorithms and fuzzy systems for the optimization of power systems is discussed in detail. Preliminary mathematical concepts are presented before moving to more advanced material. Researchers and graduate students will benefit from this book. Engineers working in utility companies, operations and control, and resource management will also find this book useful. ​


Classical and Recent Aspects of Power System Optimization

Classical and Recent Aspects of Power System Optimization

Author: Ahmed F. Zobaa

Publisher: Academic Press

Published: 2018-06-29

Total Pages: 588

ISBN-13: 0128124423

DOWNLOAD EBOOK

Classical and Recent Aspects of Power System Optimization presents conventional and meta-heuristic optimization methods and algorithms for power system studies. The classic aspects of optimization in power systems, such as optimal power flow, economic dispatch, unit commitment and power quality optimization are covered, as are issues relating to distributed generation sizing, allocation problems, scheduling of renewable resources, energy storage, power reserve based problems, efficient use of smart grid capabilities, and protection studies in modern power systems. The book brings together innovative research outcomes, programs, algorithms and approaches that consolidate the present state and future challenges for power. - Analyzes and compares several aspects of optimization for power systems which has never been addressed in one reference - Details real-life industry application examples for each chapter (e.g. energy storage and power reserve problems) - Provides practical training on theoretical developments and application of advanced methods for optimum electrical energy for realistic engineering problems


Optimization Methods Applied to Power Systems

Optimization Methods Applied to Power Systems

Author: Francisco G. Montoya

Publisher: MDPI

Published: 2019-07-26

Total Pages: 382

ISBN-13: 3039211307

DOWNLOAD EBOOK

This book presents an interesting sample of the latest advances in optimization techniques applied to electrical power engineering. It covers a variety of topics from various fields, ranging from classical optimization such as Linear and Nonlinear Programming and Integer and Mixed-Integer Programming to the most modern methods based on bio-inspired metaheuristics. The featured papers invite readers to delve further into emerging optimization techniques and their real application to case studies such as conventional and renewable energy generation, distributed generation, transport and distribution of electrical energy, electrical machines and power electronics, network optimization, intelligent systems, advances in electric mobility, etc.


Systems Optimization Methodology, Part 1

Systems Optimization Methodology, Part 1

Author: Vyacheslav V Kolbin

Publisher: World Scientific

Published: 1998-11-23

Total Pages: 457

ISBN-13: 9814502588

DOWNLOAD EBOOK

This monograph defines the notion of a “system” by reference to those systems which exhibit goal-oriented behavior and utilize the notion of decision making and controls. Such systems allow for phenomenological description and fix the nature of causal transformations of input effects into output quantities. The study of consequences of the fact that the systems possess some properties constitutes the content of systems optimization methodology which goes beyond the scope of descriptive classification of systems.Chapter 1 deals with philosophical problems of systems methodology. An attempt is made to systematize and analyze the problems of scientific methodology as applied to systems modeling methodology which is viewed as the most general concept utilized in modern science.Chapter 2 focuses on problems of qualitative analysis in natural and social sciences. Attention is drawn to problems of measurement theory and quantitative analysis of systems.Approaches and methods of systems analysis and synthesis form the central portion of the book. Much study is given to the methods of systems decomposition, an integration using both discrete and continuous descriptions of objects, processes, and phenomena. Examples of complex goal-oriented systems are also provided.The remaining part of the book is largely centered around the methodology of multiobjective systems optimization.


Optimization in Renewable Energy Systems

Optimization in Renewable Energy Systems

Author: Ozan Erdinc

Publisher: Butterworth-Heinemann

Published: 2017-02-25

Total Pages: 327

ISBN-13: 0081012098

DOWNLOAD EBOOK

Optimization in Renewable Energy Systems: Recent Perspectives covers all major areas where optimization techniques have been applied to reduce uncertainty or improve results in renewable energy systems (RES). Production of power with RES is highly variable and unpredictable, leading to the need for optimization-based planning and operation in order to maximize economies while sustaining performance. This self-contained book begins with an introduction to optimization, then covers a wide range of applications in both large and small scale operations, including optimum operation of electric power systems with large penetration of RES, power forecasting, transmission system planning, and DG sizing and siting for distribution and end-user premises. This book is an excellent choice for energy engineers, researchers, system operators, system regulators, and graduate students. - Provides chapters written by experts in the field - Goes beyond forecasting to apply optimization techniques to a wide variety of renewable energy system issues, from large scale to relatively small scale systems - Provides accompanying computer code for related chapters


Energy Optimization in Process Systems

Energy Optimization in Process Systems

Author: Stanislaw Sieniutycz

Publisher: Elsevier

Published: 2009-05-06

Total Pages: 771

ISBN-13: 008091442X

DOWNLOAD EBOOK

Despite the vast research on energy optimization and process integration, there has to date been no synthesis linking these together. This book fills the gap, presenting optimization and integration in energy and process engineering. The content is based on the current literature and includes novel approaches developed by the authors. Various thermal and chemical systems (heat and mass exchangers, thermal and water networks, energy converters, recovery units, solar collectors, and separators) are considered. Thermodynamics, kinetics and economics are used to formulate and solve problems with constraints on process rates, equipment size, environmental parameters, and costs. Comprehensive coverage of dynamic optimization of energy conversion systems and separation units is provided along with suitable computational algorithms for deterministic and stochastic optimization approaches based on: nonlinear programming, dynamic programming, variational calculus, Hamilton-Jacobi-Bellman theory, Pontryagin's maximum principles, and special methods of process integration. Integration of heat energy and process water within a total site is shown to be a significant factor reducing production costs, in particular costs of utilities for the chemical industry. This integration involves systematic design and optimization of heat exchangers and water networks (HEN and WN). After presenting basic, insight-based Pinch Technology, systematic, optimization-based sequential and simultaneous approaches to design HEN and WN are described. Special consideration is given to the HEN design problem targeting stage, in view of its importance at various levels of system design. Selected, advanced methods for HEN synthesis and retrofit are presented. For WN design a novel approach based on stochastic optimization is described that accounts for both grassroot and revamp design scenarios. - Presents a unique synthesis of energy optimization and process integration that applies scientific information from thermodynamics, kinetics, and systems theory - Discusses engineering applications including power generation, resource upgrading, radiation conversion and chemical transformation, in static and dynamic systems - Clarifies how to identify thermal and chemical constraints and incorporate them into optimization models and solutions


Optimization of Energy Systems

Optimization of Energy Systems

Author: Ibrahim Din¿er

Publisher: John Wiley & Sons

Published: 2017-05-15

Total Pages: 484

ISBN-13: 111889443X

DOWNLOAD EBOOK

An essential resource for optimizing energy systems to enhance design capability, performance and sustainability Optimization of Energy Systems comprehensively describes the thermodynamic modelling, analysis and optimization of numerous types of energy systems in various applications. It provides a new understanding of the system and the process of defining proper objective functions for determination of the most suitable design parameters for achieving enhanced efficiency, cost effectiveness and sustainability. Beginning with a general summary of thermodynamics, optimization techniques and optimization methods for thermal components, the book goes on to describe how to determine the most appropriate design parameters for more complex energy systems using various optimization methods. The results of each chapter provide potential tools for design, analysis, performance improvement, and greenhouse gas emissions reduction. Key features: Comprehensive coverage of the modelling, analysis and optimization of many energy systems for a variety of applications. Examples, practical applications and case studies to put theory into practice. Study problems at the end of each chapter that foster critical thinking and skill development. Written in an easy-to-follow style, starting with simple systems and moving to advanced energy systems and their complexities. A unique resource for understanding cutting-edge research in the thermodynamic analysis and optimization of a wide range of energy systems, Optimization of Energy Systems is suitable for graduate and senior undergraduate students, researchers, engineers, practitioners, and scientists in the area of energy systems.