This book constitutes the refereed proceedings of the First International Conference on Systems Modelling and Management, ICSMM 2020, planned to be held in Bergen, Norway, in June 2020. Due to the COVID-19 pandemic the conference did not take place physically or virtually. The 10 full papers and 3 short papers were thoroughly reviewed and selected from 19 qualified submissions. The papers are organized according to the following topical sections: verification and validation; applications; methods, techniques and tools.
Food Systems Modelling emphasizes sustainability, including the impact of agriculture and food production on profits, people and environment, with a particular focus on the ability of humanity to continue producing food in the midst of global environmental change. Sections introduce the purpose of models, the definition of a food system, the importance of disciplinary, interdisciplinary, and transdisciplinary inquiry, cover specific branches of modeling in the sustainability of food systems, and wrestle with the challenge of communicating modeling research and appropriately integrating multiple dimensions of sustainability. This book will be a welcomed reference for food scientists, agricultural scientists, nutritionists, environmental scientists, ecologists, economists, those working in agribusiness and food supply chain management, community and public health, and urban and regional planning, as well as academicians and graduate students interested in the sustainability of food systems. - Emphasizes sustainability, including the impact of agriculture and food production on profits - Focuses on the ability of humanity to continue producing food in the midst of global environmental change - Deciphers what models can teach us about food system sustainability
Predictive Modeling for Energy Management and Power Systems Engineering introduces readers to the cutting-edge use of big data and large computational infrastructures in energy demand estimation and power management systems. The book supports engineers and scientists who seek to become familiar with advanced optimization techniques for power systems designs, optimization techniques and algorithms for consumer power management, and potential applications of machine learning and artificial intelligence in this field. The book provides modeling theory in an easy-to-read format, verified with on-site models and case studies for specific geographic regions and complex consumer markets. - Presents advanced optimization techniques to improve existing energy demand system - Provides data-analytic models and their practical relevance in proven case studies - Explores novel developments in machine-learning and artificial intelligence applied in energy management - Provides modeling theory in an easy-to-read format
Battery Management Systems - Design by Modelling describes the design of Battery Management Systems (BMS) with the aid of simulation methods. The basic tasks of BMS are to ensure optimum use of the energy stored in the battery (pack) that powers a portable device and to prevent damage inflicted on the battery (pack). This becomes increasingly important due to the larger power consumption associated with added features to portable devices on the one hand and the demand for longer run times on the other hand. In addition to explaining the general principles of BMS tasks such as charging algorithms and State-of-Charge (SoC) indication methods, the book also covers real-life examples of BMS functionality of practical portable devices such as shavers and cellular phones. Simulations offer the advantage over measurements that less time is needed to gain knowledge of a battery's behaviour in interaction with other parts in a portable device under a wide variety of conditions. This knowledge can be used to improve the design of a BMS, even before a prototype of the portable device has been built. The battery is the central part of a BMS and good simulation models that can be used to improve the BMS design were previously unavailable. Therefore, a large part of the book is devoted to the construction of simulation models for rechargeable batteries. With the aid of several illustrations it is shown that design improvements can indeed be realized with the presented battery models. Examples include an improved charging algorithm that was elaborated in simulations and verified in practice and a new SoC indication system that was developed showing promising results. The contents of Battery Management Systems - Design by Modelling is based on years of research performed at the Philips Research Laboratories. The combination of basic and detailed descriptions of battery behaviour both in chemical and electrical terms makes this book truly multidisciplinary. It can therefore be read both by people with an (electro)chemical and an electrical engineering background.
The ideal introduction to the engineering design of systems—now in a new edition The Engineering Design of Systems, Second Edition compiles a wealth of information from diverse sources to provide a unique, one-stop reference to current methods for systems engineering. It takes a model-based approach to key systems engineering design activities and introduces methods and models used in the real world. Features new to this edition include: The addition of Systems Modeling Language (SysML) to several of the chapters, as well as the introduction of new terminology Additional material on partitioning functions and components More descriptive material on usage scenarios based on literature from use case development Updated homework assignments The software product CORE (from Vitech Corporation) is used to generate the traditional SE figures and the software product MagicDraw UML with SysML plugins (from No Magic, Inc.) is used for the SysML figures This book is designed to be an introductory reference and textbook for professionals and students in systems engineering. It is also useful in related courses in engineering programs that emphasize design methods and models.
"This book provides insights into state-of-the-art modeling languages and methods used for reference modeling. A reference model provides a blueprint for information systems development and analysis. Well-established reference models for industrial, retail and other industries are described"--Provided by publisher.
New for the third edition, chapters on: Complete Exercise of the SE Process, System Science and Analytics and The Value of Systems Engineering The book takes a model-based approach to key systems engineering design activities and introduces methods and models used in the real world. This book is divided into three major parts: (1) Introduction, Overview and Basic Knowledge, (2) Design and Integration Topics, (3) Supplemental Topics. The first part provides an introduction to the issues associated with the engineering of a system. The second part covers the critical material required to understand the major elements needed in the engineering design of any system: requirements, architectures (functional, physical, and allocated), interfaces, and qualification. The final part reviews methods for data, process, and behavior modeling, decision analysis, system science and analytics, and the value of systems engineering. Chapter 1 has been rewritten to integrate the new chapters and updates were made throughout the original chapters. Provides an overview of modeling, modeling methods associated with SysML, and IDEF0 Includes a new Chapter 12 that provides a comprehensive review of the topics discussed in Chapters 6 through 11 via a simple system – an automated soda machine Features a new Chapter 15 that reviews General System Theory, systems science, natural systems, cybernetics, systems thinking, quantitative characterization of systems, system dynamics, constraint theory, and Fermi problems and guesstimation Includes a new Chapter 16 on the value of systems engineering with five primary value propositions: systems as a goal-seeking system, systems engineering as a communications interface, systems engineering to avert showstoppers, systems engineering to find and fix errors, and systems engineering as risk mitigation The Engineering Design of Systems: Models and Methods, Third Edition is designed to be an introductory reference for professionals as well as a textbook for senior undergraduate and graduate students in systems engineering.
This book covers ideas, methods, algorithms, and tools for the in-depth study of the performance and reliability of dependable fault-tolerant systems. The chapters identify the current challenges that designers and practitioners must confront to ensure the reliability, availability, and performance of systems, with special focus on their dynamic behaviors and dependencies. Topics include network calculus, workload and scheduling; simulation, sensitivity analysis and applications; queuing networks analysis; clouds, federations and big data; and tools. This collection of recent research exposes system researchers, performance analysts, and practitioners to a spectrum of issues so that they can address these challenges in their work.
With over 30 years’ experience as a management teacher and consultant, Mike Pidd provides the tools for thinking that will help us to think through the consequences of decisions before we act. The third edition of Tools for Thinking builds on the successes of the previous two editions. It creates a bridge between the soft and hard (Operations Research) OR schools of thought and provides an empirically based framework in which to place them. Focusing on modelling as an activity, rather than on models and techniques, Mike Pidd shows how models can be employed to explore possible future scenarios and to make sense of managerial vision. This third edition has been fully revised and updated without changing its focus. It features a new chapter on Decision Analysis and includes up-to-date examples using popular softwares, such as Precision Tree, @Risk and Micro Saint Sharp, to illustrate how these help in developing and using management science models as tools for thinking.
This new interdisciplinary work presents system dynamics as a powerful approach to enable analysts build simulation models of social systems, with a view toward enhancing decision making. Grounded in the feedback perspective of complex systems, the book provides a practical introduction to system dynamics, and covers key concepts such as stocks, flows, and feedback. Societal challenges such as predicting the impact of an emerging infectious disease, estimating population growth, and assessing the capacity of health services to cope with demographic change can all benefit from the application of computer simulation. This text explains important building blocks of the system dynamics approach, including material delays, stock management heuristics, and how to model effects between different systemic elements. Models from epidemiology, health systems, and economics are presented to illuminate important ideas, and the R programming language is used to provide an open-source and interoperable way to build system dynamics models. System Dynamics Modeling with R also describes hands-on techniques that can enhance client confidence in system dynamic models, including model testing, model analysis, and calibration. Developed from the author’s course in system dynamics, this book is written for undergraduate and postgraduate students of management, operations research, computer science, and applied mathematics. Its focus is on the fundamental building blocks of system dynamics models, and its choice of R as a modeling language make it an ideal reference text for those wishing to integrate system dynamics modeling with related data analytic methods and techniques.