Presents recent developments of probabilistic assessment of systems dependability based on stochastic models, including graph theory, finite state automaton and language theory, for both dynamic and hybrid contexts.
Annotation This timely resource offers engineers and managers a comprehensive, unified treatment of the techniques and practice of systems reliability and failure prevention, without the use of advanced mathematics.
A high percentage of defense systems fail to meet their reliability requirements. This is a serious problem for the U.S. Department of Defense (DOD), as well as the nation. Those systems are not only less likely to successfully carry out their intended missions, but they also could endanger the lives of the operators. Furthermore, reliability failures discovered after deployment can result in costly and strategic delays and the need for expensive redesign, which often limits the tactical situations in which the system can be used. Finally, systems that fail to meet their reliability requirements are much more likely to need additional scheduled and unscheduled maintenance and to need more spare parts and possibly replacement systems, all of which can substantially increase the life-cycle costs of a system. Beginning in 2008, DOD undertook a concerted effort to raise the priority of reliability through greater use of design for reliability techniques, reliability growth testing, and formal reliability growth modeling, by both the contractors and DOD units. To this end, handbooks, guidances, and formal memoranda were revised or newly issued to reduce the frequency of reliability deficiencies for defense systems in operational testing and the effects of those deficiencies. "Reliability Growth" evaluates these recent changes and, more generally, assesses how current DOD principles and practices could be modified to increase the likelihood that defense systems will satisfy their reliability requirements. This report examines changes to the reliability requirements for proposed systems; defines modern design and testing for reliability; discusses the contractor's role in reliability testing; and summarizes the current state of formal reliability growth modeling. The recommendations of "Reliability Growth" will improve the reliability of defense systems and protect the health of the valuable personnel who operate them.
This publication defines a framework that represents the state of the art in assessment methodologies for safety and instrumentation and control software used at nuclear power plants. It describes an approach for developing and communicating assessments based on claims, argument and evidence. The assessment of software dependability, which encompasses properties such as safety, reliability, availability, maintainability and security, is an essential and challenging aspect of the safety justification. Guiding principles for a dependability assessment are established to provide the basis for defining an assessment strategy and implementing the assessment process. Sources of evidence for the assessment are provided and lessons learned from past digital instrumentation and control system implementation in areas such as software development, operational usage, regulatory review and platform certification are also described.
The book focuses on system dependability modeling and calculation, considering the impact of s-dependency and uncertainty. The best suited approaches for practical system dependability modeling and calculation, (1) the minimal cut approach, (2) the Markov process approach, and (3) the Markov minimal cut approach as a combination of (1) and (2) are described in detail and applied to several examples. The stringently used Boolean logic during the whole development process of the approaches is the key for the combination of the approaches on a common basis. For large and complex systems, efficient approximation approaches, e.g. the probable Markov path approach, have been developed, which can take into account s-dependencies be-tween components of complex system structures. A comprehensive analysis of aleatory uncertainty (due to randomness) and epistemic uncertainty (due to lack of knowledge), and their combination, developed on the basis of basic reliability indices and evaluated with the Monte Carlo simulation method, has been carried out. The uncertainty impact on system dependability is investigated and discussed using several examples with different levels of difficulty. The applications cover a wide variety of large and complex (real-world) systems. Actual state-of-the-art definitions of terms of the IEC 60050-192:2015 standard, as well as the dependability indices, are used uniformly in all six chapters of the book.
Who hasn’t dreamed of seeing matter transformed in a way that suits you? This is the goal of 4D printing, using materials that can change in terms of shape and property under the effect of energy stimulation. From the description of the actions and actuators, the authors show the weaknesses that limit the industrialization of 4D printing processes; these are the modes of energy stimulation. To prepare for the future, two chapters are introduced: “Material-Process Duality in Industrial 4D Printing” and “How to Approach 4D Printing in Design”. If the capture and reuse of 4D printing knowledge is necessary for this objective, the conclusion leaves the existing myth around the 4D printing theme and proposes a “draft” roadmap that should be the subject of reflection and scientific debate on a concept that is still immature, but full of promise.
Our transition towards a cleaner and more sustainable future has seen an increase in the use of electrical energy in the functioning of our society. This implies the need to develop tools and methods which allow us to study electromagnetic devices and ensure their functioning for as long as possible. This requires us to use these tools to understand their behavior, not just as one component, but also in the entire systems in which they can be found, throughout their life cycle. This book provides electrical engineering students and researchers with the resources to analyze how synchronous machines behave over their entire field of operation, particularly focusing on hybrid excited synchronous machines (HESMs). The field of HESMs, although not a fundamental problem in the strict sense of the term, provides answers to a range of fundamental problems: the flux weakening of permanent magnet machines, energy optimization, and lastly the increasing costs of rare-earths permanent magnets.
Organization and Pedagogy of Complexity deals with real systems, their architecture, and speaks of those who design, develop and maintain them. After a summary of the architecture proposed by Daniel Krob, president of CESAMES in Paris, France, the book focuses on the sensor and effector equipment that routes and converts the system's information to the place where it is processed. These are the equivalent of the system's sense organs. It also analyzes the roots of complexity from the perspective of combinatorics: in real systems, everything comes down to cases and/or configurations being validated in greater or lesser numbers, but which must be kept under control. This book presents two case studies, giving a global vision of complexity. Finally, it presents a prospective approach that brings the engineering of artificial systems closer to that of biological systems, based on first-hand information provided by Philippe Kourilsky, Emeritus Professor at the Collège de France.
With a turnover of some 5-15 billion € / year, the additive manufacturing has industrial niches bearers thanks to processes and materials more and more optimized. While some niches still exist on the application of additive techniques in traditional fields (from jewelery to food for example), several trends emerge, using new concepts: collective production, realization of objects at once (without addition Of material), micro-fluidic, 4D printing exploiting programmable materials and materials, bio-printing, etc. There are both opportunities for new markets, promises not envisaged less than 10 years ago, but difficulties in reaching them.
Any time objects and their (self-)organization are to be put into use, their models and methods of thinking as well as their designing and manufacturing need to be reinvented. 4D printing is a future technology that is capable of bringing 3D objects to life. This ability, which gives objects the power to change shape or properties over time through energy stimulation from active materials and additive manufacturing, makes it possible to envisage technological breakthroughs while challenging the relationship between people and objects. 4D Printing 1 presents the different facets of this technology, providing an objective, critical and even disruptive viewpoint to enable its existence and development, and to stimulate the creative drive that industry, society and humanity need in the perpetual quest for evolution and transformation.