In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression.- Best operator approximation,- Non-Lagrange interpolation,- Generic Karhunen-Loeve transform- Generalised low-rank matrix approximation- Optimal data compression- Optimal nonlinear filtering
Trends and Progress in System Identification is a three-part book that focuses on model considerations, identification methods, and experimental conditions involved in system identification. Organized into 10 chapters, this book begins with a discussion of model method in system identification, citing four examples differing on the nature of the models involved, the nature of the fields, and their goals. Subsequent chapters describe the most important aspects of model theory; the ""classical"" methods and time series estimation; application of least squares and related techniques for the estimation of dynamic system parameters; the maximum likelihood and error prediction methods; and the modern development of statistical methods. Non-parametric approaches, identification of nonlinear systems by piecewise approximation, and the minimax identification are then explained. Other chapters explore the Bayesian approach to system identification; choice of input signals; and choice and effect of different feedback configurations in system identification. This book will be useful for control engineers, system scientists, biologists, and members of other disciplines dealing withdynamical relations.
Theoretical Systems Ecology: Advances and Case Studies aims to relate systems ecology theory to theoretical systems ecologists and other theoreticians in systems science. The main language of systems theory is mathematics. This book somewhat simplifies concepts, advances, and developments of the field to non-mathematicians who lack background in some aspects of systems ecology. It presents examples after every chapter that shows the application of theory to the development and analysis of models. This book generally focuses on three problems. The first problem is the selection of components found in the system model. The definition of the relationships and interactions between the system variables is another concern of this book. It also looks into the model analysis. These problems are thoroughly discussed in each section of the book. The theory of modeling, formalisms, classes, and properties of models are covered in the first two sections of this book. A whole section in this book is dedicated to Systems Identification and deals mostly with the problem of extracting information from data. Other sections cover model analysis with focus on trends in some aspects, such as stability and control theory.
The field's leading text, now completely updated. Modeling dynamical systems — theory, methodology, and applications. Lennart Ljung's System Identification: Theory for the User is a complete, coherent description of the theory, methodology, and practice of System Identification. This completely revised Second Edition introduces subspace methods, methods that utilize frequency domain data, and general non-linear black box methods, including neural networks and neuro-fuzzy modeling. The book contains many new computer-based examples designed for Ljung's market-leading software, System Identification Toolbox for MATLAB. Ljung combines careful mathematics, a practical understanding of real-world applications, and extensive exercises. He introduces both black-box and tailor-made models of linear as well as non-linear systems, and he describes principles, properties, and algorithms for a variety of identification techniques: Nonparametric time-domain and frequency-domain methods. Parameter estimation methods in a general prediction error setting. Frequency domain data and frequency domain interpretations. Asymptotic analysis of parameter estimates. Linear regressions, iterative search methods, and other ways to compute estimates. Recursive (adaptive) estimation techniques. Ljung also presents detailed coverage of the key issues that can make or break system identification projects, such as defining objectives, designing experiments, controlling the bias distribution of transfer-function estimates, and carefully validating the resulting models. The first edition of System Identification has been the field's most widely cited reference for over a decade. This new edition will be the new text of choice for anyone concerned with system identification theory and practice.
System Identification is a special section of the International Federation of Automatic Control (IFAC)-Journal Automatica that contains tutorial papers regarding the basic methods and procedures utilized for system identification. Topics include modeling and identification; step response and frequency response methods; correlation methods; least squares parameter estimation; and maximum likelihood and prediction error methods. After analyzing the basic ideas concerning the parameter estimation methods, the book elaborates on the asymptotic properties of these methods, and then investigates the application of the methods to particular model structures. The text then discusses the practical aspects of process identification, which includes the usual, general procedures for process identification; selection of input signals and sampling time; offline and on-line identification; comparison of parameter estimation methods; data filtering; model order testing; and model verification. Computer program packages are also discussed. This compilation of tutorial papers aims to introduce the newcomers and non-specialists in this field to some of the basic methods and procedures used for system identification.
Systems and control theory has experienced significant development in the past few decades. New techniques have emerged which hold enormous potential for industrial applications, and which have therefore also attracted much interest from academic researchers. However, the impact of these developments on the process industries has been limited.The purpose of Multivariable System Identification for Process Control is to bridge the gap between theory and application, and to provide industrial solutions, based on sound scientific theory, to process identification problems. The book is organized in a reader-friendly way, starting with the simplest methods, and then gradually introducing more complex techniques. Thus, the reader is offered clear physical insight without recourse to large amounts of mathematics. Each method is covered in a single chapter or section, and experimental design is explained before any identification algorithms are discussed. The many simulation examples and industrial case studies demonstrate the power and efficiency of process identification, helping to make the theory more applicable. MatlabTM M-files, designed to help the reader to learn identification in a computing environment, are included.
This book contains the text of the plenary lectures and the mini-courses of the European Control Conference (ECC 95) held in Rome, Italy, September 5-September 8, 1995. In particular, the book includes nine essays in which a selected number of prominent authorities present their views on some of the most recent developments in the theory and practice of control systems design and three self-contained sets of lecture notes. Some of the essays are focused on the topic of robust control. The article by J. Ackermann describes how to robustly control the rotational motions of a vehicle, to the purpose of simplifying the driver's task. The contribution by H. K wakernaak presents a detailed discussion of the requirements that performance and robustness impose on control systems design and of the symmetric roles of sensitivity and complementary sensitivity functions. The article by P. Boulet, B. A. Francis, P. C . Hughes and T. Hong describes an experimental testbed facility, called Daisy, whose dynamics emulate those of a real large flexible space structure and whose purpose is to test advanced identification and control design methods. The article of K. Glover discusses recent advances in uncertain system modeling, analysis and design, with ref erence to a flight control case study that has been test flown. The other essays describe advances in fundamental problems of control theory. The article by V. A. Yakubovich is a survey of certain new infinite horizon linear-quadratic optimization problems. The contribution by A. S.
A unique treatment of signal processing using a model-based perspective Signal processing is primarily aimed at extracting useful information, while rejecting the extraneous from noisy data. If signal levels are high, then basic techniques can be applied. However, low signal levels require using the underlying physics to correct the problem causing these low levels and extracting the desired information. Model-based signal processing incorporates the physical phenomena, measurements, and noise in the form of mathematical models to solve this problem. Not only does the approach enable signal processors to work directly in terms of the problem's physics, instrumentation, and uncertainties, but it provides far superior performance over the standard techniques. Model-based signal processing is both a modeler's as well as a signal processor's tool. Model-Based Signal Processing develops the model-based approach in a unified manner and follows it through the text in the algorithms, examples, applications, and case studies. The approach, coupled with the hierarchy of physics-based models that the author develops, including linear as well as nonlinear representations, makes it a unique contribution to the field of signal processing. The text includes parametric (e.g., autoregressive or all-pole), sinusoidal, wave-based, and state-space models as some of the model sets with its focus on how they may be used to solve signal processing problems. Special features are provided that assist readers in understanding the material and learning how to apply their new knowledge to solving real-life problems. * Unified treatment of well-known signal processing models including physics-based model sets * Simple applications demonstrate how the model-based approach works, while detailed case studies demonstrate problem solutions in their entirety from concept to model development, through simulation, application to real data, and detailed performance analysis * Summaries provided with each chapter ensure that readers understand the key points needed to move forward in the text as well as MATLAB(r) Notes that describe the key commands and toolboxes readily available to perform the algorithms discussed * References lead to more in-depth coverage of specialized topics * Problem sets test readers' knowledge and help them put their new skills into practice The author demonstrates how the basic idea of model-based signal processing is a highly effective and natural way to solve both basic as well as complex processing problems. Designed as a graduate-level text, this book is also essential reading for practicing signal-processing professionals and scientists, who will find the variety of case studies to be invaluable. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department
This is a revised version of the 1984 book of the same name but considerably modified and enlarged to accommodate the developments in recursive estimation and time series analysis that have occurred over the last quarter century. Also over this time, the CAPTAIN Toolbox for recursive estimation and time series analysis has been developed at Lancaster, for use in the MatlabTM software environment (see Appendix G). Consequently, the present version of the book is able to exploit the many computational routines that are contained in this widely available Toolbox, as well as some of the other routines in MatlabTM and its other toolboxes. The book is an introductory one on the topic of recursive estimation and it demonstrates how this approach to estimation, in its various forms, can be an impressive aid to the modelling of stochastic, dynamic systems. It is intended for undergraduate or Masters students who wish to obtain a grounding in this subject; or for practitioners in industry who may have heard of topics dealt with in this book and, while they want to know more about them, may have been deterred by the rather esoteric nature of some books in this challenging area of study.
Linear Stochastic Systems, originally published in 1988, is today as comprehensive a reference to the theory of linear discrete-time-parameter systems as ever. Its most outstanding feature is the unified presentation, including both input-output and state space representations of stochastic linear systems, together with their interrelationships. The author first covers the foundations of linear stochastic systems and then continues through to more sophisticated topics including the fundamentals of stochastic processes and the construction of stochastic systems; an integrated exposition of the theories of prediction, realization (modeling), parameter estimation, and control; and a presentation of stochastic adaptive control theory. Written in a clear, concise manner and accessible to graduate students, researchers, and teachers, this classic volume also includes background material to make it self-contained and has complete proofs for all the principal results of the book. Furthermore, this edition includes many corrections of errata collected over the years.