Dipolar cycloaddition reactions have found many useful applications in chemistry, particularly with respect to the synthesis of compounds with new chiral centers. Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products updates the popular 1984 edition, featuring the advances made over the past twenty years and focusing on synthetic applications.
Modern Applications of Cycloaddition Chemistry examines this area of organic chemistry, with special attention paid to cycloadditions in synthetic and mechanistic applications in modern organic chemistry. While many books dedicated to cycloaddition reactions deal with the synthesis of heterocycles, general applications, specific applications in natural product synthesis, and the use of a class of organic compounds, this work sheds new light on pericyclic reactions by demonstrating how these valuable tools elegantly solve synthetic and mechanistic problems. The work examines how pericyclic reactions have been extensively applied to different chemistry areas, such as chemical biology, biological processes, catalyzed cycloaddition reactions, and more. This work will be useful for organic chemists who deal with organic chemistry, medicinal chemistry, agrochemistry and material chemistry. - Provides details on the synthesis of antiviral and anticancer compounds, marking the key role of unconventional catalyzed cycloaddition reactions for preparing new derivatives in a unique reaction pathway that is scalable in industrial processes - Contains the most up-to-date review of the use of pericyclic reactions in drug delivery - Includes the enzyme-catalyzed processes involving cycloaddition reactions for different targets, demonstrating that cycloaddition is more common in nature than expected - Features new applications for cycloadditions in material chemistry and provides a general view of the most recent results in the area
T. L.S. Kishbaugh: Metalation of Pyrrole.- K.-S. Yeung: Furans and Benzofurans.- P. E. Alford: Lithiation-Based and Magnesation-Based Strategies for the Functionalization of Imidazole: 2001–2010.- L. Fu: Metalation of Oxazoles and Benzoxazoles.- S. Roy • S. Roy • G. W. Gribble: Metalation of Pyrazoles and Indazoles.- J. C. Badenock: Metalation Reactions of Isoxazoles and Benzisoxazoles.- Y.-J. Wu: Thiazoles and Benzothiazoles.- C. F. Nutaitis: Isothiazoles and Benzisothiazoles.- E. R. Biehl: Recent Advances in the Synthesis of Thiophenes and Benzothiophenes.- J. M. Lopchuk: Mesoionics.- J. M. Lopchuk: Azoles with 3-4 Heteroatoms.
With a foreword from leading organic chemist Professor Paul Wender, this book collects the major developments reported in the past thirty years in the field of enantioselective reactions promoted by chiral cobalt catalysts, illustrating the power of these green catalysts to provide all types of organic reactions from the basic to completely novel methodologies. The search for new methodologies to prepare optically pure products is one of the most active areas of research in organic synthesis. Of the methods available for preparing chiral compounds, catalytic asymmetric synthesis has attracted the most attention. In particular, asymmetric transition-metal catalysis is a powerful tool for performing reactions in a highly enantioselective fashion. Efforts to develop new asymmetric transformations have previously focused on the use of rare metals such as titanium, palladium, iridium and gold. However, the ever-growing need for environmentally friendly catalytic processes has prompted chemists to focus on the more abundant and less toxic first-row transition metals, such as cobalt, to develop new catalytic systems. The ability of cobalt catalysts to adopt unexpected reaction pathways has led to an impressive number of enantioselective cobalt-promoted transformations being developed over the past three decades. These have included the synthesis of many different types of products, often under relatively mild conditions and with remarkable enantioselectivities. This book is a useful reference resource for chemists, both academic and industrial, working in organic synthesis and interested in greener or more economical catalytic alternatives.
A unique approach to a core topic in organic chemistry presented by an experienced teacher to students and professionals Heterocyclic rings are present in the majority of known natural products, contributing to enormous structural diversity. In addition, they often possess significant biological activity. Medicinal chemists have embraced this last property in designing most of the small molecule drugs in use today. This book offers readers a fundamental understanding of the basics of heterocyclic chemistry and their occurrence in natural products such as amino acids, DNA, vitamins, and antibiotics. Based on class lectures that the author has developed over more than 40 years of teaching, it focuses on the chemistry of such heterocyclic substances and how they differ from carbocyclic systems. Introductory Heterocyclic Chemistry offers in-depth chapters covering naturally occurring heterocycles; properties of aromatic heterocycles; π-deficient heterocycles; π-excessive heterocycles; and ring transformations of heterocycles. It then offers an overview of 1,3-dipolar cycloadditions before finishing up with a back-to-basics section on nitriles and amidines. Presents a conversational approach to a fundamental topic in organic chemistry teaching Offers a unique look at this core organic chemistry topic via important naturally occurring and/or biologically active heterocycles Based on the author's many years of class lectures for teaching at the undergraduate and graduate level as well as pharmaceutical-industry courses Clear, concise, and accessible for advanced students of chemistry to gain a fundamental understanding of the basics of heterocyclic chemistry Introductory Heterocyclic Chemistry is an excellent text for undergraduate and graduate students as well as chemists in industrial environments in chemistry, pharmacy, medicinal chemistry, and biology.
Due to the lower costs of nickel catalysts and the high abundance of nickel complexes, enantioselective nickel-mediated transformations have received a continuous and growing attention in recent years. This book demonstrates the diversity of chemistry catalysed by chiral nickel catalysts. Discussing several different enantioselective transformations, this book presents the impressive range of uses that have been found for novel and already known nickel chiral catalysts, from basic organic transformations to completely novel methodologies including fascinating one-pot domino and multicomponent reactions. This much-needed book is ideal for researchers and industrialists in organic chemistry, synthesis and medicinal chemistry.
Provides the background, tools, and models required to understand organic synthesis and plan chemical reactions more efficiently Knowledge of physical chemistry is essential for achieving successful chemical reactions in organic chemistry. Chemists must be competent in a range of areas to understand organic synthesis. Organic Chemistry provides the methods, models, and tools necessary to fully comprehend organic reactions. Written by two internationally recognized experts in the field, this much-needed textbook fills a gap in current literature on physical organic chemistry. Rigorous yet straightforward chapters first examine chemical equilibria, thermodynamics, reaction rates and mechanisms, and molecular orbital theory, providing readers with a strong foundation in physical organic chemistry. Subsequent chapters demonstrate various reactions involving organic, organometallic, and biochemical reactants and catalysts. Throughout the text, numerous questions and exercises, over 800 in total, help readers strengthen their comprehension of the subject and highlight key points of learning. The companion Organic Chemistry Workbook contains complete references and answers to every question in this text. A much-needed resource for students and working chemists alike, this text: -Presents models that establish if a reaction is possible, estimate how long it will take, and determine its properties -Describes reactions with broad practical value in synthesis and biology, such as C-C-coupling reactions, pericyclic reactions, and catalytic reactions -Enables readers to plan chemical reactions more efficiently -Features clear illustrations, figures, and tables -With a Foreword by Nobel Prize Laureate Robert H. Grubbs Organic Chemistry: Theory, Reactivity, and Mechanisms in Modern Synthesis is an ideal textbook for students and instructors of chemistry, and a valuable work of reference for organic chemists, physical chemists, and chemical engineers.
Unique in its focus on preparative impact rather than mechanistic details, this handbook provides an overview of photochemical reactions classed according to the structural feature that is built in the photochemical step, so as to facilitate use by synthetic chemists unfamiliar with this topic. An introductory section covers practical questions on how to run a photochemical reaction, while all classes of the most important photocatalytic reactions are also included. Perfect for organic synthetic chemists in academia and industry.
This book is a volume in the series Topics in Heterocyclic Chemistry.Itc- ers the key methods used for designing synthetic approaches to heterocycles from carbohydrates and the value and scope of these methods. Carbohydrates are widely distributed in nature and constitute the largest part of renewable biomasses. Moreover, many carbohydrates and their derivatives are comm- cially available at relatively cheap prices. Consequently their utilization is highly encouraged and economically they are of great signi?cance. Moreover, carbohydrates are highly functionalized compounds that can be readily deri- tized and/or cyclized to provide heterocyclic compounds. This book provides a modern account and an up-to-date description of the advancement in the synthesis of diverse heterocycles from carbohydrates. Carbohydrates can be considered as a source of chiral centers in addition to the variable modi?cation thereof. Herein the elaboration of the carbohydrate molecules for providing different heterocycles is the main objective and team efforts from leaders of the topics has been gathered in this volume. This book is designed to be suitable for students and researchers. It is highly recommended as a reference book and for teaching the fascinating topics related to carbohydrates, heterocycles and organic synthesis. In addition to its importance in academia, it is also an excellent source for information about the variety of methods used in the synthesis of heterocycles important to industry.