Understanding the reactivity of monomers is crucial in creating copolymers and determining the outcome of copolymerization. Covering the fundamental aspects of polymerization, Synthesis and Applications of Copolymers explores the reactivity of monomers and reaction conditions that ensure that the newly formed polymeric materials exhibit desired properties. Referencing a wide-range of disciplines, the book provides researchers, students, and scientists with the preparation of a diverse variety of copolymers and their recent developments, with a particular focus on copolymerization, crystallization, and techniques like nanoimprinting and micropatterning.
This book comprehensively reviews the synthesis, characterization and application aspects of linear and crosslinked synthetic polyampholytes - simple model of biopolymers - starting from the 1950's. The synthetic strategy of "annealed", "quenched" and "zwitterionic" polyampholytes, the properties of polyampholytes in solutions and in gel state are considered. The complexation ability of polyampholytes with respect to transition metal ions, ionic surfactants, dyes and organic probes polyelectrolytes, proteins and colloid particles is discussed. Stimuli-sensitive behavior of various amphoteric gel and membrane systems demonstrating rhythmically phenomenon similar to that of heart beat, deformation, oscillation or self-oscillation phenomena stimulated by temperature, pH and electric field are illustrated. Catalytic properties of synthetic polyampholytes simulating the function of enzymes are also considered.
In order to adapt the properties of living materials to their biological functions, nature has developed unique polyelectrolytes with outstanding physical, chemical and mechanical behavior. Namely polyampholytes can be suitable substances to model protein folding phenomenon and enzymatic activity most of biological macromolecules due to the presence of acidic and basic groups. The ability of linear and crosslinked amphoteric macromolecules to adopt globular, coil, helix and stretched conformations and to demonstrate coil-globule, helix-coil phase transitions, and sol-gel, collapsed expanded volume changes in relation to internal (nature and distribution of acid and base substituents, copolymer composition, hydrophobicity etc. ) and external (pH, temperature, ionic strength of the solution, thermodynamic quality of solvents etc. ) factors is very important and constantly attracts the attention of theorists and experimentalists because the hierarchy of amphoteric macromolecules can repeat, more or less, the structural organization of proteins. That is why polyampholytes fall within eyeshot of several disciplines, at least polymer chemistry and physics, molecular biology, colloid chemistry, coordination chemistry and catalysis. The main purpose of this monograph is to bridge the gap between synthetic and natural polymers and to show a closer relationship between two fascinating worlds. The first chapter of the book acquaints the readers with synthetic strategy of "annealed", "quenched" and "zwitterionic" polyampholytes. Radical copolymerization, chemical modification and radiation-chemical polymerization methods are thoroughly considered. Kinetics and mechanism of formation of random, alternating, graft, di-block or tri-block sequences is discussed. The second chapter deals with behavior of polyampholytes in solutions.
Polyampholytes are unique polymers containing acid/base and/or anionic/cationic groups in the main or side chains. Water-soluble and water-swelling polyampholytes exhibit properties that provide broad potential as structural biomaterials, drug delivery and chemo-mechanical systems, biosensors, energy storage devices, supercapacitors, and actuators, among others. This monograph reviews the innovative studies in this field over the past two decades, with the aim to analyze and systematize the literature in the context of emerging technologies. Offers a multidisciplinary perspective covering polyampholytes, polybetaines, and polyzwitterions in nanotechnology, biotechnology, medicine, catalysis, environment protection, and oil industry applications Demonstrates a wide range of applications for these materials with enough depth to provide critical fundamental knowledge for new researchers in the field Discusses polyampholyte-protected and gel-immobilized metal nanoparticles and enzymes that catalyze reactions of hydrolysis, decomposition, hydrogenation, and oxidation of various substrates in batch-type and continuous flow–type reactors Highlights the remaining persistent challenges in the development and application of these materials This book will appeal to readers who conduct materials research for biomedical, water treatment, and environmental remediation applications.
An expert synthesis of the latest materials and methods with applications for groundwater and wastewater treatment Materials and Methods for Industrial Wastewater and Groundwater Treatment delivers an up-to-date discussion of the materials and methods being used to address the problem of pollutants in industrial wastewaters and groundwater. The book describes innovative new materials with significant potential to emerge as a next-generation solution in the water treatment space. Cutting-edge research is synthesized into these novel materials and methods and case studies demonstrate real-world applications of new solutions for water treatment. Readers will also find: A thorough introduction to new materials and techniques for treating wastewater and groundwater to remove pollutants Comprehensive explorations of the latest research on commercially viable methods for treating wastewater and groundwater Case studies highlighting the practical application of novel methods and materials as next-generation solutions for water treatment Perfect for industrial chemists, environmental and material researchers and supervisors, and consulting and design engineers in wastewater treatment plants, Materials and Methods for Industrial Wastewater and Groundwater Treatment will also benefit design professionals, materials scientists, and environmental engineers with an interest in nanomaterial applications to wastewater treatments.
Smart Polymeric Nano-Constructs in Drug Delivery: Concept, Design and Therapeutic Applications provides a thorough discussion of the most state of the art material and polymer exploitations for the delivery of bioactive(s) as well as their current and clinical status. The book enables researchers to prepare a variety of smart drug delivery systems to investigate their properties as well as to discover their uses and applications. The novelty of this approach addresses an existing need of exhaustively understanding the potential of the materials including polymeric drug delivery systems that are smartly designed to deliver bioactive(s) into the body at targeted sites without showing side effects. The book is helpful for those in the health sector, specifically those developing nanomedicine using smart material-based nano-delivery systems. Polymers have unique co-operative properties that are not found with low-molecular-weight compounds along with their appealing physical and chemical properties, constituting the root of their success in drug delivery. Smart Polymeric Nano-Constructs in Drug Delivery: Concept, Design and Therapeutic Applications discusses smart and stimuli responsive polymers applicable in drug delivery, followed detailed information about various concepts and designing of polymeric novel drug delivery systems for treatment of various type of diseases, also discussing patents related to the field. The book helps readers to design and develop novel drug delivery systems based on smart materials for the effective delivery of bioactive that take advantage of recent advances in smart polymer-based strategies. It is useful to those in pharmaceutical sciences and related fields in developing new drug delivery systems. - Provides comprehensive overview of the potential role of polymeric systems in drug delivery - Explores the design, synthesis, and application of different smart material-based delivery systems - Includes fundamental and clinical applications
The Concise Encyclopedia of Biomedical Polymers and Polymeric Biomaterials presents new and selected content from the 11-volume Biomedical Polymers and Polymeric Biomaterials Encyclopedia. The carefully culled content includes groundbreaking work from the earlier published work as well as exclusive online material added since its publication in print. A diverse and global team of renowned scientists provide cutting edge information concerning polymers and polymeric biomaterials. Acknowledging the evolving nature of the field, the encyclopedia also features newly added content in areas such as tissue engineering, tissue repair and reconstruction, and biomimetic materials.
Spanning the entire field from fundamentals to applications in material science, this one-stop source is the first comprehensive reference for polymer, physical and surface chemists, materials scientists, chemical engineers, and those chemists working in industry. From the contents: * Introduction: Living Free Radical Polymerization and the RAFT Process * Fundamental Structure-Reactivity Correlations Governing the RAFT Process * Mechanism and Kinetics * The RAFT Process as a Kinetic Tool * Theory and Practice in Technical Applications * RAFT Polymerization in Bulk and Organic Solvents, as well as Homogeneous Aqueous Systems * Emulsion and Mini-Emulsion Polymerization * Complex Architecture Design * Macromolecular Design via the Interchange of Xanthates * Surface Modification * Stability and Physical Properties of RAFT Polymers * Novel Materials: From Drug Delivery to Opto-Electronics * Outlook and Future Developments
This volume presents the proceedings of the 9th Asian-Pacific Conference on Medical and Biological Engineering (APCMBE 2014). The proceedings address a broad spectrum of topics from Bioengineering and Biomedicine, like Biomaterials, Artificial Organs, Tissue Engineering, Nanobiotechnology and Nanomedicine, Biomedical Imaging, Bio MEMS, Biosignal Processing, Digital Medicine, BME Education. It helps medical and biological engineering professionals to interact and exchange their ideas and experiences.