Synthesis of Diaryl and Heteroaryl Sulfides and Development of Stereospecific Nickel-catalyzed Cross-coupling Reactions

Synthesis of Diaryl and Heteroaryl Sulfides and Development of Stereospecific Nickel-catalyzed Cross-coupling Reactions

Author: Ivelina M. Yonova

Publisher:

Published: 2013

Total Pages: 274

ISBN-13: 9781303642050

DOWNLOAD EBOOK

Development of synthetic methods for the mild and efficient construction of carbon-carbon and carbon-heteroatom bonds is an active field of research in organic and organometalic chemistry. The utility of such transformations is displayed in their applications to the synthesis of structurally interesting and biologically active compounds. Furthermore, development of new methods can expand our knowledge and understanding of fundamental reactivity of organic and organometallic intermediates. Herein, I report results from two projects: (1) use of reactive sulfenyl chlorides for the synthesis of diaryl and heteroaryl thioethers, and (2) a stereospecific nickel-catalyzed Kumada cross-coupling reaction of benzylic ethers. Both projects emphasize on expanding the scope to include heterocyclic moieties. A mild protocol for the synthesis of thioethers is described. In a one-pot procedure, thiols are converted to sulfenyl chlorides and reacted with arylzinc reagents in the absence of a transition metal catalyst. This method allows for the synthesis of a variety of diaryl and heteroaryl sulfides without the use of harsh reaction conditions or expensive metal catalysts. A stereospecific nickel-catalyzed Kumada cross-coupling reaction of benzylic ethers containing sensitive N-heterocyclic moieties has been developed. To gain access into this class of substrates we have incorporated a traceless activating group that facilitates oxidative addition. Lewis acid activation of an ether moiety by magnesium salts accelerates oxidative addition, resulting in an increased rate of cross-coupling pathway as compared to unfavorable side reactions. Investigation of the reactivity of nickel complexes has allowed for the stereospecific construction of tertiary benzylic carbon stereocenters and expansion of the scope of the nickel-catalyzed cross-coupling reaction to include the use of long chain alkylmagnesium reagents containing beta-hydrogens. This methodology is applied to the synthesis of a number of enantioenriched diarylalkanes, a common structural motif in biologically active complexes. Mechanistic investigations are consistent with a racemization pathway involving a nucleophilic displacement of a pi-benzylnickel intermediate by a low-valent nickel species.


Development of Stereospecific Nickel-Catalyzed Cross-Coupling and Reductive Cross-Electrophile Coupling Reactions

Development of Stereospecific Nickel-Catalyzed Cross-Coupling and Reductive Cross-Electrophile Coupling Reactions

Author: Lucas William Erickson

Publisher:

Published: 2017

Total Pages: 321

ISBN-13: 9780355307122

DOWNLOAD EBOOK

In recent years, the Jarvo lab has developed the field of stereospecific nickel-catalyzed cross-coupling reactions of benzylic electrophiles. This chemistry allows for straightforward synthesis of asymmetric C--C bonds. The focus of this dissertation is on the study of the mechanism of these transformations, and the development of reductive cross-electrophile coupling reactions.First, the mechanism of the nickel-catalyzed Kumada cross-coupling reaction was studied via a 13C kinetic isotope effect experiment. This experiment indicated that oxidative addition of the nickel catalyst into the C--O sigma bond was the rate limiting step. Combining this data with a rate law allowed us to propose a catalytic cycle for this reaction. Additionally, the nickel-catalyzed deoxygenation of benzylic ethers was optimized for the formation of diaryl methanes. Deoxygenation performed best with a proton-rich Grignard reagent. We demonstrated that these Grignard reagents act as the hydride source for the reduction reaction.Next, an intramolecular nickel-catalyzed reductive cross-electrophile coupling reaction of benzylic ethers and alkyl chlorides was developed. This reaction proceeds with a variety of extended aromatic and heteroaromatic groups to produce cyclopropane rings in great yields and diastereoselectivity. This is the first example of a stereospecific reductive cross-electrophile coupling reaction, as well as the first to employ alkyl ethers and alkyl halides as the electrophiles.Finally, the work on nickel-catalyzed reductive cross-electrophile coupling reactions was expanded to synthesize vinylcyclopropanes from allylic ethers and alkyl halides. This reaction occurs with both alkyl fluorides and alkyl chlorides. To the best of our knowledge, this is the first reported cross-electrophile coupling reaction of an alkyl fluoride. Ring contraction proceeds with high stereospecificity, providing selective synthesis of either diastereomer of di- and tri-substituted cyclopropanes. The utility of this methodology is demonstrated by several synthetic applications including the synthesis of the natural product dictyopterene A. 2-Vinyl-4-fluorotetrahydrofurans also undergo stereospecific ring contractions, providing access to synthetically useful hydroxymethyl cyclopropanes.


Nickel-Catalyzed Cross-Coupling Reactions

Nickel-Catalyzed Cross-Coupling Reactions

Author: Luke Edward Hanna

Publisher:

Published: 2016

Total Pages: 333

ISBN-13: 9781369667578

DOWNLOAD EBOOK

Cross-coupling technology has become an indispensable tool for the rapid and efficient synthesis of complex molecules. Over the past few decades a foundational understanding of organometallic chemistry has been laid using palladium and other precious metals. Recent research on first row base metal catalysts such as nickel, cobalt and iron has uncovered new and complementary modes of reactivity compared to their more well-studied precious metal counterparts. While nickel sits one row above palladium on the periodic table, ongoing research has illustrated that nickel possesses a unique reactivity profile. Thus, while nickel is commonly thought of as a cheaper alternative to palladium, research in the field of nickel catalysis has demonstrated far more potential than this. The unique propensity of nickel to undergo single electron chemistry as well as its ability to break strong carbon oxygen bonds make research into nickel reactivity an immensely beneficial endeavor to the fields of inorganic, organometallic and synthetic organic chemistry.Chapter 1 describes the development of a stereospecific Suzuki coupling of benzylic carbamates and pivalates with aryl- and heteroarylboronic esters. The reaction proceeds with selective inversion or retention at the electrophilic carbon, depending on the identity of the ligand used. Tricyclohexylphosphine ligand provides products with retention of configuration at the electrophilic carbon, while an N-heterocyclic carbene ligand SIMes provides products with inversion.Chapter 2 discusses the development of a regio- and stereoselective nickel-catalyzed hydroarylation of alkynes using propargylic carbamates as directing groups. The reaction proceeds under mild reaction conditions using arylboronic acids in the absence of base. A range of heterocycles and functional groups are tolerated under the reaction conditions. Additionally, the method is applied to the synthesis of tamoxifen.Chapter 3 details a nickel-catalyzed cross-electrophile coupling reaction of benzylic esters and aryl halides. Both inter- and intramolecular variants proceed under mild reaction conditions. A range of heterocycles and functional groups are tolerated under the reaction conditions. Additionally, the first example of a stereospecific cross-electrophile coupling of a secondary benzylic ester is described.Chapter 4 presents secondary benzylzinc reagents generated from 2-pyridylcarbinols using a nickel catalyst and diethylzinc. Substrates are activated in situ using a chlorophosphate reagent. Quenching the organozinc reagents allows for facile deoxygenation of 2-pyridylcarbinols in a one-pot reaction with straightforward incorporation of a deuterium label from deuteromethanol. An intramolecular conjugate addition of a secondary benzylzinc reagent with an alpha,beta-unsaturated ester is also demonstrated.


Development of Nickel-catalyzed Stereospecific Cross-coupling Reactions

Development of Nickel-catalyzed Stereospecific Cross-coupling Reactions

Author: Buck L. H. Taylor

Publisher:

Published: 2012

Total Pages: 171

ISBN-13: 9781267652379

DOWNLOAD EBOOK

Transition-metal catalyzed cross-coupling reactions are powerful methods for the synthesis of natural products and medicinal compounds. Cross-coupling reactions of secondary alkyl electrophiles are currently more challenging than those of aryl or vinyl halides, but these reactions enable the construction of tertiary stereogenic centers with control of configuration. Several methods have been reported for the stereoconvergent cross-coupling of alkyl halides using chiral nickel catalysts. Herein, we report the development of a stereospecific cross-coupling reaction of enantioenriched benzylic ethers using achiral nickel catalysts. We initially performed mechanistic studies to determine the stereochemical course of established nickel-catalyzed cross-coupling reactions. A deuterium-labeled alkylborane reagent was used to establish that transmetalation from boron to nickel occurs with retention of configuration. In addition, these studies establish that alkylnickel intermediates are stereochemically stable under these cross-coupling conditions. A stereospecific cross-coupling reaction of benzylic ethers with alkyl Grignard reagents has been developed. Enantioenriched benzylic ethers, derivatives of easily synthesized chiral secondary alcohols, undergo cross-coupling with high enantiospecificity using an achiral nickel catalyst. The method was applied to the asymmetric synthesis of a biologically active diarylethane, a common structural motif in medicinally relevant compounds. Initial mechanistic studies are consistent with a rate-limiting oxidative addition that is facilitated by a magnesium Lewis-acid. The cross-coupling method has been extended to include aryl Grignard reagents for the asymmetric synthesis of triarylmethanes. The reaction proceeds in high enantiospecificity and employs an ether leaving group capable of chelating to magnesium ions. The method was applied to the asymmetric synthesis of an anti-breast-cancer agent.


Development of Stereospecific Nickel-Catalyzed Cross-Coupling Reactions

Development of Stereospecific Nickel-Catalyzed Cross-Coupling Reactions

Author: Emily Jean Tollefson

Publisher:

Published: 2016

Total Pages: 575

ISBN-13: 9781369226966

DOWNLOAD EBOOK

The development of asymmetric transition-metal-catalyzed reactions has emerged as an important area of research in the past decade. Advances in the field are transforming the way chemists approach the construction of target compounds. This dissertation focuses on the expansion of stereospecific nickel-catalyzed reactions to synthesize small unnatural polyketide analogs, chiral long chain carboxylic acids, and highly substituted cyclopropanes. In the presence of an achiral nickel catalyst, a bidentate phosphine ligand, and a Grignard reagent, aryl-substituted tetrahydropyrans and tetrahydrofurans undergo a stereospecific ring-opening to afford acyclic polyketide analogs with complex stereoarrays and promising anti-cancer activity. Reactions proceed with inversion of stereochemistry at the benzylic position and are substrate controlled. Similarly, enantioenriched aryl-substituted lactones undergo a Negishi-type cross-coupling with dimethylzinc to afford enantioenriched carboxylic acids. The utility of this reaction was demonstrated in a two-step synthesis of an anti-dyslipidemia agent.The nickel catalyst system was employed to develop the first stereospecific reductive cross-coupling reaction. 2-Aryl-4-chlorotetrahydropyrans undergo an intramolecular ring contraction to afford highly substituted cyclopropanes. The reactions proceed with retention at the benzylic center and inversion at the alkyl halide position. Vinyl-substituted tetrahydropyrans are also amenable substrates for this transformation and afford vinylcyclopropane products with excellent control of stereochemistry. This is the first reported reductive coupling between alkyl ethers and alkyl halides and provides a new, mild synthetic route to both aryl- and vinyl-substituted cyclopropanes.


Development of Nickel-Catalyzed Coupling Reactions

Development of Nickel-Catalyzed Coupling Reactions

Author: Mikhail Olegovich Konev

Publisher:

Published: 2017

Total Pages: 503

ISBN-13: 9780355308976

DOWNLOAD EBOOK

Transition metal catalyzed reactions are ubiquitous in the realm of synthetic chemistry, allowing for the strategic construction of complex molecular frameworks of pharmaceuticals, natural products, and synthetic materials. Palladium-catalyzed cross-coupling reactions are part of the foundation of these transformations, insofar as they were recognized with the 2010 Nobel Prize in chemistry. Traditionally, these reactions have relied on aryl and vinyl electrophiles, whereas the alkyl counterparts have only recently begun to emerge in the literature. Nickel has been on the forefront of enantioconvergent alkyl cross--coupling reactions due to its propensity to undergo single electron chemistry. However, under special conditions, it has a unique ability to break strong carbon--oxygen bonds in a stereospecific manner, making research into its reactivity a valuable endeavor to the field of organometallic chemistry.Chapter 1 describes the development of a stereospecific intramolecular alkyl-Heck cyclization of benzylic ethers. The reaction proceeds with inversion at the electrophilic carbon, for the synthesis of methylenecyclopentanes of both extended pi-electron and simple aromatic systems. The enantioenriched products can be effectively derivatized to cyclic alpha-aryl ketones in good yields with good transfer of chirality. Avenues to expand the utility of this reaction have been identified and further studies are ongoing.Chapter 2 discusses the development of nickel-catalyzed cross-electrophile coupling reactions of benzylic esters and aryl halides. An intermolecular reaction proceeds in high yields for primary benzylic esters for the synthesis of pharmacologically relevant diarylmethanes. The corresponding intramolecular cyclization proceeds under mild conditions, demonstrating the first example of a stereospecific cross-electrophile coupling of secondary benzylic esters. A variety of heterocyclic and functionalized substrates are tolerated under the reaction conditions.Chapter 3 examines the development a regio- and stereoselective nickel-catalyzed hydroarylation of alkynes with arylboronic acids. The reaction is facilitated by propargyl carbamates as directing groups. The reaction is tolerant of a range of functional groups and heterocycles. Mechanistic studies reveal that the acidic protons of the arylboronic acid coupling partner serve as the origin of hydrogen. Furthermore, the synthesis of tamoxifen can be completed in two steps from a simple hydroarylation product.


Ni- and Fe-Based Cross-Coupling Reactions

Ni- and Fe-Based Cross-Coupling Reactions

Author: Arkaitz Correa

Publisher: Springer

Published: 2016-11-26

Total Pages: 342

ISBN-13: 3319497847

DOWNLOAD EBOOK

The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.


Metal Catalyzed Cross-Coupling Reactions and More

Metal Catalyzed Cross-Coupling Reactions and More

Author: Armin de Meijere

Publisher: John Wiley & Sons

Published: 2013-12-04

Total Pages: 1640

ISBN-13: 3527655603

DOWNLOAD EBOOK

This three volume book is the follow-up handbook to the bestselling volume "Metal-Catalyzed Cross-Coupling Reactions", the definitive reference in the field. In line with the enormous developments in this area, this is not a new edition, but rather a new book in three volumes with over 50% more content. This new content includes C-H activation, shifting the focus away from typical cross-coupling reactions, while those topics and chapters found in de Meijere/Diederich's book have been updated and expanded. With its highly experienced editor team and the list of authors reading like an international Who's-Who in the field, this work will be of great interest to every synthetic chemist working in academia and industry.


Nickel Catalysis in Organic Synthesis

Nickel Catalysis in Organic Synthesis

Author: Sensuke Ogoshi

Publisher: John Wiley & Sons

Published: 2020-03-09

Total Pages: 348

ISBN-13: 3527344071

DOWNLOAD EBOOK

A comprehensive reference to nickel chemistry for every scientist working with organometallic catalysts Written by one of the world?s leading reseachers in the field, Nickel Catalysis in Organic Synthesis presents a comprehensive review of the high potential of modern nickel catalysis and its application in synthesis. Structured in a clear and assessible manner, the book offers a collection of various reaction types, such as cross-coupling reactions, reactions for the activation of unreactive bonds, carbon dioxide fixation, and many more. Nickel has been recognized as one of the most interesting transition metals for homogeneous catalysis. This book offers an overview to the recently developed new ligands, new reaction conditions, and new apparatus to control the reactivity of nickel catalysts, allowing scientists to apply nickel catalysts to a variety of bond-forming reactions. A must-read for anyone working with organometallic compounds and their application in organic synthesis, this important guide: -Reviews the numerous applications of nickel catalysis in synthesis -Explores the use of nickel as a relatively cheap and earth-abundant metal -Examines the versatility of nickel catalysis in reactions like cross-coupling reactions and CH activations -Offers a resource for academics and industry professionals Written for catalytic chemists, organic chemists, inorganic chemists, structural chemists, and chemists in industry, Nickel Catalysis in Organic Synthesis provides a much-needed overview of the most recent developments in modern nickel catalysis and its application in synthesis.


Metal-catalyzed Cross-coupling Reactions

Metal-catalyzed Cross-coupling Reactions

Author: François Diederich

Publisher: John Wiley & Sons

Published: 2008-07-11

Total Pages: 540

ISBN-13: 3527612203

DOWNLOAD EBOOK

Carbon-carbon bond forming reactions are arguably the most important processes in chemistry, as they represent key steps in the building of complex molecules from simple precursors. Among these reactions, metal-catalyzed cross-coupling reactions are extensively employed in a wide range of areas of preparative organic chemistry, ranging from the synthesis of complex natural products, to supramolecular chemistry, and materials science. In this work, a dozen internationally renowned experts and leaders in the field bring the reader up to date by documenting and critically analyzing current developments and uses of metal-catalyzed cross-coupling reactions. A particularly attractive and useful feature, that enhances the practical value of this monograph, is the inclusion of key synthetic protocols, in experimental format, chosen for broad utility and application. This practice-oriented book can offer the practitioner short cuts to ensure they remain up-to-date with the latest developments.