This text is a primer for liquid crystals, polymers, rubber and elasticity. It is directed at physicists, chemists, material scientists, engineers and applied mathematicians at the graduate student level and beyond.
may never overcome the effects of hysteresis and stress (see Chapters 6 and 12). The first sentence of the reference work, Handbook of Liquid Crystals, reads: The terms liquid crystals, crystalline liquid, mesophase, and mesomorphous state are used synonymously to describe a state of aggregation that exhibits a molecular order in a size range similar to that of a crystal but acts more or less as a viscous liquid: [2] In other words, molecules within a liquid crystalline phase possess some orientational order and lack positional order; furthermore, the shape of a liquid crystalline sample is determined by the vessel in which it is contained rather than by the orientational order of its aggregated molecules. The authors recognized the limitations and imprecision of this definition but, like others preceding them, could not devise a simple and generally applicable one that is better. Regardless, the terms 'liquid crystal' and 'mesophase' should not be used interchangeably. As mentioned above, all liquid crystals are mesophases, but all mesophases are not liquid crystals. Recent studies, employing elaborate and sophisticated analytical techniques, have permitted finer distinctions between classical crystals and mesophases. At the same time, they have made definitions like that from the Handbook of Liquid Crystals somewhat obsolete for reasons other than terminology. One part of the problem arises from the use of a combination of bulk properties (like flow) and microscopic properties (like molecular ordering) within the same definition.
1. T. Takata, N. Kihara, Y. Furusho: Polyrotaxanes and Polycatenanes: Recent Advances in Syntheses and Applications of Polymers Comprising of Interlocked Structures.- 2. M. Suginome, Y. Ito: Transition Metal-Mediated Polymerization of Isocyanides.- 3. K. Osakada, D. Takeuchi: Coordination Polymerization of Dienes, Allenes and Methylenecycloalkanes.
A Clear And Reliable Guide To Students Of Practical Organic Chemistry At The Undergraduate And Postgraduate Levels. This Edition S Special Emphasis Is On Semi Micro Methods And Modern Techniques And Reactions.
This book explores functional polymers containing aromatic azo chromophores in side-chain, main-chain and other parts of their structures, known as azo polymers and which share common photoresponsive properties. It focuses on the molecular architecture of azo polymers, the synthetic methods and their most important functions, such as photoinduced birefringence and dichroism, surface-relief-grating (SRG) formation, and light-driven deformation of liquid crystal elastomers. It combines a general survey of the subject and in-depth discussions of each topic, including numerous illustrations, figures, and photographs. Offering a balance between an introduction to the core concepts and a snapshot of hot and emerging topics, it is of interest to graduate students and researchers working in this and related fields. Xiaogong Wang is a Professor at the Department of Chemical Engineering, Tsinghua University, China.
The study of ferroelectricity is a branch of solid state physics which has shown rapid growth during the recent years. Ferroelectric materials exhibit unusual electric properties which make them useful in modern (opto)electronic technology, esp. display technology. Ferroelectric and antiferroelectric liquid crystals, including also various polymer forms, are the hottest research topic today in liquid crystals. The field is at the very beginning of industrial exploitation - a sensitive phase in which a good reference work is needed and will have a broad spectrum of readers both at universities and in industry.
Preparation of Liquid Crystalline Elastomers, by F. Brömmel, D. Kramer, H. Finkelmann Applications of Liquid Crystalline Elastomers, by C. Ohm, M. Brehmer und R. Zentel Liquid Crystal Elastomers and Light, by Peter Palffy-Muhoray Electro-Opto-Mechanical Effects in Swollen Nematic Elastomers, by Kenji Urayama The Isotropic-to-Nematic Conversion in Liquid Crystalline Elastomers, by Andrija Lebar, George Cordoyiannis, Zdravko Kutnjak und Bostjan Zalar Order and Disorder in Liquid-Crystalline Elastomers, by Wim H. de Jeu und Boris I. Ostrovskii