Advanced Magnetic Nanostructures

Advanced Magnetic Nanostructures

Author: D.J. Sellmyer

Publisher: Springer Science & Business Media

Published: 2006-07-02

Total Pages: 514

ISBN-13: 0387233164

DOWNLOAD EBOOK

Advanced magnetic nanostructures is an emerging field in magnetism and nanotechnology, but the literature consists of a rich variety of original papers and parts of reviews and books whose scope is comparatively broad. This calls for a book with specific emphasis on state-of-the-art synthetic methods for fabricating, characterizing and theoretically modeling new magnetic nanostructures. This book is intended to provide a comprehensive overview of the present state of the field. Leading researchers world-wide have contributed a survey of their special ties to guide the reader through the exploding literature in nanomagnetic structures. The focus is on deliberately structured nanomagnets. It includes cluster assembled, self-organized and patterned thin films but excludes, for example, multilayered thin films. We target both industrial and academic researchers in magnetism and related areas, such as nanotechnology, materials science, and theoretical solid-state physics.


Synthesis and Characterization of Advanced Materials

Synthesis and Characterization of Advanced Materials

Author: Michael A. Serio

Publisher:

Published: 1998

Total Pages: 296

ISBN-13:

DOWNLOAD EBOOK

These papers by leading experts look at current methods for synthesizing new materials. The methods presented include chemical vapor deposition synthesis, solution synthesis, pyrolysis and combustion synthesis, and polymer synthesis. Featuring in-depth coverage of ceramic materials, the volume also discusses group III nitrides, fullerenes, and ferroelectrics.


Advanced Magnetic Materials

Advanced Magnetic Materials

Author: Leszek Malkinski

Publisher: BoD – Books on Demand

Published: 2012-05-24

Total Pages: 246

ISBN-13: 9535106376

DOWNLOAD EBOOK

This book reports on recent progress in emerging technologies, modern characterization methods, theory and applications of advanced magnetic materials. It covers broad spectrum of topics: technology and characterization of rapidly quenched nanowires for information technology; fabrication and properties of hexagonal ferrite films for microwave communication; surface reconstruction of magnetite for spintronics; synthesis of multiferroic composites for novel biomedical applications, optimization of electroplated inductors for microelectronic devices; theory of magnetism of Fe-Al alloys; and two advanced analytical approaches for modeling of magnetic materials using Everett integral and the inverse problem approach. This book is addressed to a diverse group of readers with general background in physics or materials science, but it can also benefit specialists in the field of magnetic materials.


Advanced Magnetic Adsorbents for Water Treatment

Advanced Magnetic Adsorbents for Water Treatment

Author: Lucas Meili

Publisher: Springer Nature

Published: 2021-09-29

Total Pages: 501

ISBN-13: 3030640922

DOWNLOAD EBOOK

This book compiles 15 chapters about the synthesis, characterizations, and application of many kinds of magnetic adsorbents for water treatment. It is devoted to the scientific community that works with adsorption technologies for water treatment and remediation. Specifically, for professors and Ph.D. students. It is expected that this book serves as an interesting background for researchers in the field of magnetic adsorbents for water treatment.


Magnetic Nanoparticle-Based Hybrid Materials

Magnetic Nanoparticle-Based Hybrid Materials

Author: Andrea Ehrmann

Publisher: Woodhead Publishing

Published: 2021-06-23

Total Pages: 761

ISBN-13: 0128236892

DOWNLOAD EBOOK

Magnetic Nanoparticle-Based Hybrid Materials: Fundamentals and Applications introduces the principles, properties, and emerging applications of this important materials system. The hybridization of magnetic nanoparticles with metals, metal oxides and semiconducting nanoparticles may result in superior properties. The book reviews the most relevant hybrid materials, their mechanisms and properties. Then, the book focuses on the rational design, controlled synthesis, advanced characterizations and in-depth understanding of structure-property relationships. The last part addresses the promising applications of hybrid nanomaterials in the real world such as in the environment, energy, medicine fields. Magnetic Nanoparticle-Based Hybrid Materials: Fundamentals and Applications comprehensively reviews both the theoretical and experimental approaches used to rapidly advance nanomaterials that could result in new technologies that impact day-to-day life and society in key areas such as health and the environment. It is suitable for researchers and practitioners who are materials scientists and engineers, chemists or physicists in academia and R&D. - Provides in-depth information on the basic principles of magnetic nanoparticles-based hybrid materials such as synthesis, characterization, properties, and magnon interactions - Discusses the most relevant hybrid materials systems including integration of metals, metal oxides, polymers, carbon and more - Addresses the emerging applications in medicine, the environment, energy, sensing, and computing enabled by magnetic nanoparticles-based hybrid materials


Aquananotechnology

Aquananotechnology

Author: David E. Reisner

Publisher: CRC Press

Published: 2014-09-24

Total Pages: 852

ISBN-13: 1466512253

DOWNLOAD EBOOK

The world's fresh water supplies are dwindling rapidly-even wastewater is now considered an asset. By 2025, most of the world's population will be facing serious water stresses and shortages. Aquananotechnology: Global Prospects breaks new ground with its informative and innovative introduction of the application of nanotechnology to the remediatio


Handbook of Advanced Magnetic Materials

Handbook of Advanced Magnetic Materials

Author: Yi Liu

Publisher: Springer Science & Business Media

Published: 2008-11-23

Total Pages: 1844

ISBN-13: 1402079842

DOWNLOAD EBOOK

In December 2002, the world's first commercial magnetic levitation super-train went into operation in Shanghai. The train is held just above the rails by magnetic levitation (maglev) and can travel at a speed of 400 km/hr, completing the 30km journey from the city to the airport in minutes. Now consumers are enjoying 50 GB hard drives compared to 0.5 GB hard drives ten years ago. Achievements in magnetic materials research have made dreams of a few decades ago reality. The objective of the four volume reference, Handbook of Advanced Magnetic Materials, is to provide a comprehensive review of recent progress in magnetic materials research. Each chapter will have an introduction to give a clear definition of basic and important concepts of the topic. The details of the topic are then elucidated theoretically and experimentally. New ideas for further advancement are then discussed. Sufficient references are also included for those who wish to read the original work. In the last decade, one of the most significant thrust areas of materials research has been nanostructured magnetic materials. There are several critical sizes that control the behavior of a magnetic material, and size effects become especially critical when dimensions approach a few nanometers, where quantum phenomena appear. The first volume of the book, Nanostructured Advanced Magnetic Materials, has therefore been devoted to the recent development of nanostructured magnetic materials, emphasizing size effects. Our understanding of magnetism has advanced with the establishment of the theory of atomic magnetic moments and itinerant magnetism. Simulation is a powerful tool for exploration and explanation of properties of various magnetic materials. Simulation also provides insight for further development of new materials. Naturally, before any simulation can be started, a model must be constructed. This requires that the material be well characterized. Therefore the second volume, Characterization and Simulation provides a comprehensive review of both experimental methods and simulation techniques for the characterization of magnetic materials. After an introduction, each section gives a detailed description of the method and the following sections provide examples and results of the method. Finally further development of the method will be discussed. The success of each type of magnetic material depends on its properties and cost which are directly related to its fabrication process. Processing of a material can be critical for development of artificial materials such as multilayer films, clusters, etc. Moreover, cost-effective processing usually determines whether a material can be commercialized. In recent years processing of materials has continuously evolved from improvement of traditional methods to more sophisticated and novel methods. The objective of the third volume, Processing of Advanced Magnetic Materials, is to provide a comprehensive review of recent developments in processing of advanced magnetic materials. Each chapter will have an introduction and a section to provide a detailed description of the processing method. The following sections give detailed descriptions of the processing, properties and applications of the relevant materials. Finally the potential and limitation of the processing method will be discussed. The properties of a magnetic material can be characterized by intrinsic properties such as anisotropy, saturation magnetization and extrinsic properties such as coercivity. The properties of a magnetic material can be affected by its chemical composition and processing route. With the continuous search for new materials and invention of new processing routes, magnetic properties of materials cover a wide spectrum of soft magnetic materials, hard magnetic materials, recording materials, sensor materials and others. The objective of the fourth volume, Properties and Applications of Advanced Magnetic Materials, is to provide a comprehensive review of recent development of various magnetic materials and their applications. Each chapter will have an introduction of the materials and the principles of their applications. The following sections give a detailed description of the processing, properties and applications. Finally the potential and limitation of the materials will be discussed.


Nanomaterials for Magnetic and Optical Hyperthermia Applications

Nanomaterials for Magnetic and Optical Hyperthermia Applications

Author: Raluca Maria Fratila

Publisher: Elsevier

Published: 2018-11-30

Total Pages: 386

ISBN-13: 0128139293

DOWNLOAD EBOOK

Nanomaterials for Magnetic and Optical Hyperthermia Applications focuses on the design, fabrication and characterization of nanomaterials (magnetic, gold and hybrid magnetic-gold nanoparticles) for in vitro and in vivo hyperthermia applications, both as standalone and adjuvant therapy in combination with chemotherapy. The book explores the potential for more effective cancer therapy solutions through the synergistic use of nanostructured materials as magnetic and optical hyperthermia agents and targeted drug delivery vehicles, while also discussing the challenges related to their toxicity, regulatory and translational aspects. In particular, the book focuses on the design, synthesis, biofunctionalization and characterization of nanomaterials employed for magnetic and optical hyperthermia. This book will be an important reference resource for scientists working in the areas of biomaterials and biomedicine seeking to learn about the potential of nanomaterials to provide hyperthermia solutions. - Explores the design of efficient nanomaterials for hyperthermia applications, allowing readers to make informed materials selection decisions - Discusses the biofunctionalization of a range of nanomaterials and their interaction with living systems - Provides an overview of the current clinical applications of nanomaterials in hyperthermia treatment


Processing and Properties of Advanced Ceramics and Composites VI

Processing and Properties of Advanced Ceramics and Composites VI

Author: J. P. Singh

Publisher: John Wiley & Sons

Published: 2014-09-29

Total Pages: 386

ISBN-13: 1118996674

DOWNLOAD EBOOK

Contains 32 papers from the following seven 2013 Materials Science and Technology (MS&T'13) symposia: Innovative Processing and Synthesis of Ceramics, Glasses and Composites Advances in Ceramic Matrix Composites Advanced Materials for Harsh Environments Advances in Dielectric Materials and Electronic Devices Controlled Synthesis, Processing, and Applications of Structure and Functional Nanomaterials Rustum Roy Memorial Symposium: Processing and Performance of Materials Using Microwaves, Electric and Magnetic Fields, Ultrasound, Lasers, and Mechanical Work Solution Based Processing for Ceramic Materials


Advanced Materials And Energy Sustainability - Proceedings Of The 2016 International Conference On Advanced Materials And Energy Sustainability (Ames2016)

Advanced Materials And Energy Sustainability - Proceedings Of The 2016 International Conference On Advanced Materials And Energy Sustainability (Ames2016)

Author: Joy Iong-zong Chen

Publisher: World Scientific

Published: 2017-03-17

Total Pages: 749

ISBN-13: 9813220406

DOWNLOAD EBOOK

2016 International Conference on Advanced Materials and Energy Sustainability [AMES2016] was held in Wuhan, Hubei, China during May 27-29, 2016. AMES2016 aims to bring together researchers, engineers, and students to participate in the discussion of Advanced Materials and Energy Sustainability. AMES2016 features unique mixed topics of Advanced Materials and Related Technology, Energy Management and Renewable Energy and Environmental Engineering and Sustainable Development.The conference program committee is greatly honoured to have three renowned experts for taking time off to present their keynotes to the conference. In addition, we have put together five invited sessions. There are a total of 260 submissions from various parts of the world. Among them, 87 articles are compiled into this proceedings, covering Polymers, Composites and Mesoporous Materials; Applications of Micro- and Nano-Technology and Materials; Processing Technologies and Computational Methods in Area of Materials Science; Smart Grid, Micro-Grid Concepts; Fuels, Combustion and Materials Handling; Advanced and Renewable Energy Systems; Sustainable Management of Environment; Sustainable Cities and Communities, Transportation and Wind Energy Systems and Technologies.