Frontiers of Engineering

Frontiers of Engineering

Author: National Academy of Engineering

Publisher: National Academies Press

Published: 2019-02-28

Total Pages: 125

ISBN-13: 0309487501

DOWNLOAD EBOOK

This volume presents papers on the topics covered at the National Academy of Engineering's 2018 US Frontiers of Engineering Symposium. Every year the symposium brings together 100 outstanding young leaders in engineering to share their cutting-edge research and innovations in selected areas. The 2018 symposium was held September 5-7 and hosted by MIT Lincoln Laboratory in Lexington, Massachusetts. The intent of this book is to convey the excitement of this unique meeting and to highlight innovative developments in engineering research and technical work.


Frontiers of Engineering

Frontiers of Engineering

Author: National Academy of Engineering

Publisher: National Academies Press

Published: 2001-03-07

Total Pages: 133

ISBN-13: 0309073197

DOWNLOAD EBOOK

In 1995 the National Academy of Engineering (NAE) initiated the Frontiers of Engineering Symposium program, which every year brings together 100 of the nation's future engineering leaders to learn about cutting-edge research and technical work in different engineering fields. On September 14-16, 2000, the National Academy of Engineering held its sixth Frontiers of Engineering Symposium at the Academies' Beckman Center in Irvine, California. Symposium speakers were asked to prepare extended summaries of their presentations, and it is those papers that are contained here. The intent of this book, and of the five that precede it in the series, is to describe the content and underpinning philosophy of this unique meeting and to highlight some of the exciting developments in engineering today.


Research Frontiers in Bioinspired Energy

Research Frontiers in Bioinspired Energy

Author: National Research Council

Publisher: National Academies Press

Published: 2012-03-28

Total Pages: 82

ISBN-13: 0309220440

DOWNLOAD EBOOK

In May 2007, the National Academies Chemical Sciences Roundtable held a public workshop on the topic of Bioinspired Chemistry for Energy, where government, academic, and industry representatives discussed promising research developments in solar-generated fuels, hydrogen-processing enzymes, artificial photosynthetic systems, and biological-based fuel cells. Workshop participants identified the need for a follow-up activity that would explore bioinspired energy processes in more depth and involve a wider array of disciplines as speakers and participants. Particularly, workshop participants stressed the importance of holding a workshop that would include more researchers from the biological sciences and engineering, as well as those involved in technological advances that enable progress in understanding these systems. Building upon the 2007 workshop, the National Academies Board on Chemical Sciences and Technology convened the Committee on Research Frontiers in Bioinspired Energy to organize a second workshop in 2011 which, according to the statement of task, would explore the molecular-level frontiers of energy processes in nature through an interactive, multidisciplinary, and public format. Specifically, the committee was charged to feature invited presentations and include discussion of key biological energy capture, storage, and transformation processes; gaps in knowledge and barriers to transitioning the current state of knowledge into applications; and underdeveloped research opportunities that might exist beyond disciplinary boundaries. Research Frontiers in Bioinspired Energy is an account of what occurred at the 2011 workshop, and does not attempt to present any consensus findings or recommendations of the workshop participants. It summarizes the views expressed by workshop participants, and while the committee is responsible for the overall quality and accuracy of the report as a record of what transpired at the workshop, the views contained in the report are not necessarily those of the committee.


Magnesium and Its Alloys

Magnesium and Its Alloys

Author: Leszek A. Dobrzanski

Publisher: CRC Press

Published: 2019-08-01

Total Pages: 619

ISBN-13: 1351045458

DOWNLOAD EBOOK

Magnesium and Its Alloys: Technology and Applications covers a wide scope of topics related to magnesium science and engineering, from manufacturing and production to finishing and applications. This handbook contains thirteen chapters, each contributed by experts in their respective fields, and presents a broad spectrum of new information on pure magnesium, magnesium alloys, and magnesium matrix MgMCs composites. It covers such topics as computational thermodynamics, modern Mg-alloys with enhanced creep or fatigue properties, cutting-edge approaches to melt treating (grain refinement, micro-alloying, and the resulting solidification and growth), coatings, surface engineering, environmental protection (recycling and green energy storage and production), as well as biomedical applications. Aimed at researchers, professionals, and graduate students, the book conveys comprehensive and cutting-edge knowledge on magnesium alloys. It is especially useful to those in the fields of materials engineering, mechanical engineering, manufacturing engineering, and metallurgy.


Mechanics of Sheet Metal Forming

Mechanics of Sheet Metal Forming

Author: D. Koistinen

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 412

ISBN-13: 1461328802

DOWNLOAD EBOOK

This volume records the proceedings of an international symposium on "ME CHANICS OF SHEET METAL FORMING: Material Behavior and Deformation Analysis." It was sponsored and held at the General Motors Research Labora tories on October 17-18, 1977. This symposium was the twenty-first in an annual series. The objective of this symposium was to discuss the research frontiers in experimental and theoretical methods of sheet metal forming analysis and, also, to determine directions of future research to advance technology that would be useful in metal stamping plants. Metal deformation analyses which provide guide lines for metal flanging are already in use. Moreover, recent advances in computer techniques for solving plastic flow equations and in measurements of material parameters are leading to dynamic models of many stamping operations. These models would accurately predict the stresses and strains in the sheet as a function of punch travel. They would provide the engineer with the knowledge he needs to improve die designs. The symposium papers were organized into five sessions: the state of the art, constitutive relations of sheet metal, role of friction, sheet metal formability, and deformation analysis of stamping operations. We believe this volume not only summarizes the various viewpoints at the time of the symposium, but also pro vides an outlook for materials and mechanics research in the future.