Symmetry and Complexity

Symmetry and Complexity

Author: Klaus Mainzer

Publisher: World Scientific

Published: 2005

Total Pages: 448

ISBN-13: 9812561927

DOWNLOAD EBOOK

Cosmic evolution leads from symmetry to complexity by symmetry breaking and phase transitions. The emergence of new order and structure in nature and society is explained by physical, chemical, biological, social and economic self-organization, according to the laws of nonlinear dynamics. All these dynamical systems are considered computational systems processing information and entropy. Are symmetry and complexity only useful models of science or are they universals of reality? Symmetry and Complexity discusses the fascinating insights gained from natural, social and computer sciences, philosophy and the arts. With many diagrams and pictures, this book illustrates the spirit and beauty of nonlinear science. In the complex world of globalization, it strongly argues for unity in diversity.


The Universe as Automaton

The Universe as Automaton

Author: Klaus Mainzer

Publisher: Springer Science & Business Media

Published: 2011-10-01

Total Pages: 113

ISBN-13: 3642234771

DOWNLOAD EBOOK

This Brief is an essay at the interface of philosophy and complexity research, trying to inspire the reader with new ideas and new conceptual developments of cellular automata. Going beyond the numerical experiments of Steven Wolfram, it is argued that cellular automata must be considered complex dynamical systems in their own right, requiring appropriate analytical models in order to find precise answers and predictions in the universe of cellular automata. Indeed, eventually we have to ask whether cellular automata can be considered models of the real world and, conversely, whether there are limits to our modern approach of attributing the world, and the universe for that matter, essentially a digital reality.


Symmetry And Complexity: The Spirit And Beauty Of Nonlinear Science

Symmetry And Complexity: The Spirit And Beauty Of Nonlinear Science

Author: Klaus Mainzer

Publisher: World Scientific

Published: 2005-06-10

Total Pages: 448

ISBN-13: 9814480819

DOWNLOAD EBOOK

Cosmic evolution leads from symmetry to complexity by symmetry breaking and phase transitions. The emergence of new order and structure in nature and society is explained by physical, chemical, biological, social and economic self-organization, according to the laws of nonlinear dynamics. All these dynamical systems are considered computational systems processing information and entropy. Are symmetry and complexity only useful models of science or are they universals of reality? Symmetry and Complexity discusses the fascinating insights gained from natural, social and computer sciences, philosophy and the arts. With many diagrams and pictures, this book illustrates the spirit and beauty of nonlinear science. In the complex world of globalization, it strongly argues for unity in diversity.


Local Activity Principle

Local Activity Principle

Author: Klaus Mainzer

Publisher: World Scientific

Published: 2013

Total Pages: 456

ISBN-13: 1908977108

DOWNLOAD EBOOK

The principle of local activity explains the emergence of complex patterns in a homogeneous medium. At first defined in the theory of nonlinear electronic circuits in a mathematically rigorous way, it can be generalized and proven at least for the class of nonlinear reactionOCodiffusion systems in physics, chemistry, biology, and brain research. Recently, it was realized by memristors for nanoelectronic device applications. In general, the emergence of complex patterns and structures is explained by symmetry breaking in homogeneous media, which is caused by local activity. This book argues that the principle of local activity is really fundamental in science, and can even be identified in quantum cosmology as symmetry breaking of local gauge symmetries generating the complexity of matter and forces in our universe. Applications are considered in economic, financial, and social systems with the emergence of equilibrium states, symmetry breaking at critical points of phase transitions and risky acting at the edge of chaos.


Local Activity Principle: The Cause Of Complexity And Symmetry Breaking

Local Activity Principle: The Cause Of Complexity And Symmetry Breaking

Author: Klaus Mainzer

Publisher: World Scientific

Published: 2013-03-15

Total Pages: 456

ISBN-13: 1908977116

DOWNLOAD EBOOK

The principle of local activity explains the emergence of complex patterns in a homogeneous medium. At first defined in the theory of nonlinear electronic circuits in a mathematically rigorous way, it can be generalized and proven at least for the class of nonlinear reaction-diffusion systems in physics, chemistry, biology, and brain research. Recently, it was realized by memristors for nanoelectronic device applications. In general, the emergence of complex patterns and structures is explained by symmetry breaking in homogeneous media, which is caused by local activity. This book argues that the principle of local activity is really fundamental in science, and can even be identified in quantum cosmology as symmetry breaking of local gauge symmetries generating the complexity of matter and forces in our universe. Applications are considered in economic, financial, and social systems with the emergence of equilibrium states, symmetry breaking at critical points of phase transitions and risky acting at the edge of chaos./a


Complex Symmetries

Complex Symmetries

Author: György Darvas

Publisher: Springer Nature

Published: 2022-01-01

Total Pages: 262

ISBN-13: 3030880591

DOWNLOAD EBOOK

This volume is a collection of essays on complex symmetries. It is curated, emphasizing the analysis of the symmetries, not the various phenomena that display those symmetries themselves. With this, the volume provides insight to nonspecialist readers into how individual simple symmetries constitute complex symmetry. The authors and the topics cover many different disciplines in various sciences and arts. Simple symmetries, such as reflection, rotation, translation, similitude, and a few other simple manifestations of the phenomenon, are all around, and we are aware of them in our everyday lives. However, there are myriads of complex symmetries (composed of a bulk of simple symmetries) as well. For example, the well-known helix represents the combination of translational and rotational symmetry. Nature produces a great variety of such complex symmetries. So do the arts. The contributions in this volume analyse selected examples (not limited to geometric symmetries). These include physical symmetries, functional (meaning not morphological) symmetries, such as symmetries in the construction of the genetic code, symmetries in human perception (e.g., in geometry education as well as in constructing physical theories), symmetries in fractal structures and structural morphology, including quasicrystal and fullerene structures in stable bindings and their applications in crystallography and architectural design, as well as color symmetries in the arts. The volume is rounded of with beautiful illustrations and presents a fascinating panorama of this interdisciplinary topic.


Spin Glasses and Complexity

Spin Glasses and Complexity

Author: Daniel L. Stein

Publisher: Princeton University Press

Published: 2013-01-15

Total Pages: 336

ISBN-13: 1400845637

DOWNLOAD EBOOK

Spin glasses are disordered magnetic systems that have led to the development of mathematical tools with an array of real-world applications, from airline scheduling to neural networks. Spin Glasses and Complexity offers the most concise, engaging, and accessible introduction to the subject, fully explaining what spin glasses are, why they are important, and how they are opening up new ways of thinking about complexity. This one-of-a-kind guide to spin glasses begins by explaining the fundamentals of order and symmetry in condensed matter physics and how spin glasses fit into--and modify--this framework. It then explores how spin-glass concepts and ideas have found applications in areas as diverse as computational complexity, biological and artificial neural networks, protein folding, immune response maturation, combinatorial optimization, and social network modeling. Providing an essential overview of the history, science, and growing significance of this exciting field, Spin Glasses and Complexity also features a forward-looking discussion of what spin glasses may teach us in the future about complex systems. This is a must-have book for students and practitioners in the natural and social sciences, with new material even for the experts.


Geometry and Complexity Theory

Geometry and Complexity Theory

Author: J. M. Landsberg

Publisher: Cambridge University Press

Published: 2017-09-28

Total Pages: 353

ISBN-13: 110819141X

DOWNLOAD EBOOK

Two central problems in computer science are P vs NP and the complexity of matrix multiplication. The first is also a leading candidate for the greatest unsolved problem in mathematics. The second is of enormous practical and theoretical importance. Algebraic geometry and representation theory provide fertile ground for advancing work on these problems and others in complexity. This introduction to algebraic complexity theory for graduate students and researchers in computer science and mathematics features concrete examples that demonstrate the application of geometric techniques to real world problems. Written by a noted expert in the field, it offers numerous open questions to motivate future research. Complexity theory has rejuvenated classical geometric questions and brought different areas of mathematics together in new ways. This book will show the beautiful, interesting, and important questions that have arisen as a result.


Physics of Complex Systems

Physics of Complex Systems

Author: Dragutin T. Mihailović

Publisher: CRC Press

Published: 2023-09-01

Total Pages: 210

ISBN-13: 1000927199

DOWNLOAD EBOOK

This book analyses the physics of complex systems to elaborate the problems encountered in teaching and research. Inspired by the of Kurt Gödel (including his incompleteness theorems) it considers the concept of time, the idea of models and the concept of complexity before trying to assess the state of physics in general. Using both general and practical examples, the idea of information is discussed, emphasizing its physical interpretation, debates ideas in depth using examples and evidence to provide detailed considerations on the topics. Based on the authors’ own research on these topics, this book puts forward the idea that the application of information measures can provide new results in the study of complex systems. Helpful for those already familiar with the concepts who wish to deepen their critical understanding, Physics of Complex Systems will be extremely valuable both for people that are already involved in complex systems and also readers beginning their journey into the subject. This work will encourage readers to follow and continue these ideas, enabling them to investigate the various topics further.


Symmetry, Causality, Mind

Symmetry, Causality, Mind

Author: Michael Leyton

Publisher: MIT Press

Published: 1992

Total Pages: 644

ISBN-13: 9780262621311

DOWNLOAD EBOOK

In this investigation of the psychological relationship between shape and time, Leyton argues compellingly that shape is used by the mind to recover the past and as such it forms a basis for memory. Michael Leyton's arguments about the nature of perception and cognition are fascinating, exciting, and sure to be controversial. In this investigation of the psychological relationship between shape and time, Leyton argues compellingly that shape is used by the mind to recover the past and as such it forms a basis for memory. He elaborates a system of rules by which the conversion to memory takes place and presents a number of detailed case studies--in perception, linguistics, art, and even political subjugation--that support these rules. Leyton observes that the mind assigns to any shape a causal history explaining how the shape was formed. We cannot help but perceive a deformed can as a dented can. Moreover, by reducing the study of shape to the study of symmetry, he shows that symmetry is crucial to our everyday cognitive processing. Symmetry is the means by which shape is converted into memory. Perception is usually regarded as the recovery of the spatial layout of the environment. Leyton, however, shows that perception is fundamentally the extraction of time from shape. In doing so, he is able to reduce the several areas of computational vision purely to symmetry principles. Examining grammar in linguistics, he argues that a sentence is psychologically represented as a piece of causal history, an archeological relic disinterred by the listener so that the sentence reveals the past. Again through a detailed analysis of art he shows that what the viewer takes to be the experience of a painting is in fact the extraction of time from the shapes of the painting. Finally he highlights crucial aspects of the mind's attempt to recover time in examples of political subjugation.