The study of isoperimetric inequalities involves a fascinating interplay of analysis, geometry and the theory of partial differential equations. Several conjectures have been made and while many have been resolved, a large number still remain open.One of the principal tools in the study of isoperimetric problems, especially when spherical symmetry is involved, is Schwarz symmetrization, which is also known as the spherically symmetric and decreasing rearrangement of functions. The aim of this book is to give an introduction to the theory of Schwarz symmetrization and study some of its applications.The book gives an modern and up-to-date treatment of the subject and includes several new results proved recently. Effort has been made to keep the exposition as simple and self-contained as possible. A knowledge of the existence theory of weak solutions of elliptic partial differential equations in Sobolev spaces is, however, assumed. Apart from this and a general mathematical maturity at the graduate level, there are no other prerequisites.
This is the first systematic presentation of the capacitory approach and symmetrization in the context of complex analysis. The content of the book is original – the main part has not been covered by existing textbooks and monographs. After an introduction to the theory of condenser capacities in the plane, the monotonicity of the capacity under various special transformations (polarization, Gonchar transformation, averaging transformations and others) is established, followed by various types of symmetrization which are one of the main objects of the book. By using symmetrization principles, some metric properties of compact sets are obtained and some extremal decomposition problems are solved. Moreover, the classical and present facts for univalent and multivalent meromorphic functions are proven. This book will be a valuable source for current and future researchers in various branches of complex analysis and potential theory.
Students and researchers from all fields of mathematics are invited to read and treasure this special Proceedings. A conference was held 25 –29 September 2017 at Noah’s On the Beach, Newcastle, Australia, to commemorate the life and work of Jonathan M. Borwein, a mathematician extraordinaire whose untimely passing in August 2016 was a sorry loss to mathematics and to so many members of its community, a loss that continues to be keenly felt. A polymath, Jonathan Borwein ranks among the most wide ranging and influential mathematicians of the last 50 years, making significant contributions to an exceptional diversity of areas and substantially expanding the use of the computer as a tool of the research mathematician. The contributions in this commemorative volume probe Dr. Borwein's ongoing legacy in areas where he did some of his most outstanding work: Applied Analysis, Optimization and Convex Functions; Mathematics Education; Financial Mathematics; plus Number Theory, Special Functions and Pi, all tinged by the double prisms of Experimental Mathematics and Visualization, methodologies he championed.
The mathematical theory of machine learning not only explains the current algorithms but can also motivate principled approaches for the future. This self-contained textbook introduces students and researchers of AI to the main mathematical techniques used to analyze machine learning algorithms, with motivations and applications. Topics covered include the analysis of supervised learning algorithms in the iid setting, the analysis of neural networks (e.g. neural tangent kernel and mean-field analysis), and the analysis of machine learning algorithms in the sequential decision setting (e.g. online learning, bandit problems, and reinforcement learning). Students will learn the basic mathematical tools used in the theoretical analysis of these machine learning problems and how to apply them to the analysis of various concrete algorithms. This textbook is perfect for readers who have some background knowledge of basic machine learning methods, but want to gain sufficient technical knowledge to understand research papers in theoretical machine learning.
The study of isoperimetric inequalities involves a fascinating interplay of analysis, geometry and the theory of partial differential equations. Several conjectures have been made and while many have been resolved, a large number still remain open.One of the principal tools in the study of isoperimetric problems, especially when spherical symmetry is involved, is Schwarz symmetrization, which is also known as the spherically symmetric and decreasing rearrangement of functions. The aim of this book is to give an introduction to the theory of Schwarz symmetrization and study some of its applications.The book gives an modern and up-to-date treatment of the subject and includes several new results proved recently. Effort has been made to keep the exposition as simple and self-contained as possible. A knowledge of the existence theory of weak solutions of elliptic partial differential equations in Sobolev spaces is, however, assumed. Apart from this and a general mathematical maturity at the graduate level, there are no other prerequisites.
This book features a collection of papers by plenary, semi-plenary and invited contributors at IWOTA2021, held at Chapman University in hybrid format in August 2021. The topics span areas of current research in operator theory, mathematical physics, and complex analysis.
This book focuses on developments in complex dynamical systems and geometric function theory over the past decade, showing strong links with other areas of mathematics and the natural sciences. Traditional methods and approaches surface in physics and in the life and engineering sciences with increasing frequency – the Schramm‐Loewner evolution, Laplacian growth, and quadratic differentials are just a few typical examples. This book provides a representative overview of these processes and collects open problems in the various areas, while at the same time showing where and how each particular topic evolves. This volume is dedicated to the memory of Alexander Vasiliev.
This volume is a collection of articles presented at the Workshop for Nonlinear Analysis held in João Pessoa, Brazil, in September 2012. The influence of Bernhard Ruf, to whom this volume is dedicated on the occasion of his 60th birthday, is perceptible throughout the collection by the choice of themes and techniques. The many contributors consider modern topics in the calculus of variations, topological methods and regularity analysis, together with novel applications of partial differential equations. In keeping with the tradition of the workshop, emphasis is given to elliptic operators inserted in different contexts, both theoretical and applied. Topics include semi-linear and fully nonlinear equations and systems with different nonlinearities, at sub- and supercritical exponents, with spectral interactions of Ambrosetti-Prodi type. Also treated are analytic aspects as well as applications such as diffusion problems in mathematical genetics and finance and evolution equations related to electromechanical devices.